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The Coxeter-Weyl group W (F4) is constructed in terms of quaternions and its orbits representing the vertices

of the 4D-polytopes corresponding to the Platonic and Archimedean versions of polyhedra in three dimensions are

determined. The vertices of the polytopes are displayed in terms of discrete quaternions projected to three dimensions

using its non-conjugate Coxeter-Weyl subgroups W (SO(7))L and W (SO(7))R which are the symmetries of the solids

possessing octahedral symmetry. We also explain the cell structures of the 9 polytopes of interest and construct the

vertices with the use of all subgroups W (SO(7))L, W (SO(7))R, (D3 × Z2)L, (D3 × Z2)R of W (F4) acting in three

dimensions.

1. Introduction

The Platonic solids have been used in Greek phi-
losophy to classify fundamental matter: tetrahe-
dron with fire, cube with earth, air with octahe-
dron, and water with icosahedron. Kepler tried to
explain the orbits of planets with Platonic solids
placed in concentric spheres. Of course, these ap-
proaches were abandoned as science progressed.
Recent discoveries have proved that Platonic solids
and Archimedean solids, which are obtained from
Platonic solids by rectifications and truncations,
have been successfully used to explain the crys-
tallographic structures in physics, molecular struc-
tures in chemistry [1] and virus capsids in biol-
ogy [2].

The O(4) symmetry of the 4D-Euclidean space
can best be described by quaternions. In particu-
lar, the finite subgroups of O(4) can be used to
describe the Coxeter-Weyl groups of the Lie al-
gebras SO(8), SO(9), F4 [3] and the quasicrys-
tallographic Coxeter group H4 [4] where left-right
multiplications of discrete quaternionic elements of
the binary polyhedral groups are invoked. In the
paper [5] we classified the Platonic and Archime-
den solids in 3D-Euclidean space using the quater-
nionic descriptions of the orbits of the Coxeter-
Weyl groups of SU(4), SO(7) and H3. In a sub-
sequent paper [6] we extended our work to de-
termine the Coxeter-Weyl orbits of W (SO(9)) in
terms of quaternions and classified the Platonic
and Archimedean Polytopes of W (SO(9)).

In this paper we study the regular and semi-
regular polytopes of W (F4) corresponding to
Platonic and Archimedean versions of the 3D-
polyhedra. In the paper [3] we constructed the
root system of the exceptional Lie algebra F4 in
terms of quaternions and constructed the automor-
phism group Aut(F4) = {[O, O]⊕ [O, O]∗} in terms
of the quaternionic elements of the binary octahe-
dral group O. In what follows, using the Lie alge-
braic technique [7], we determine the quaternionic
vertices of the regular and semi-regular polytopes
of W (F4). In Section 2 we briefly summarize the
quaternionic construction of Aut(F4) = {[O, O] ⊕
[O, O]∗} and show how W (SO(9)) is embedded in
W (F4) triply-symmetric way. We construct the
rank-3 subgroups W (SO(7))L, W (SO(7))R, (D3×
Z2)L, (D3 × Z2)R and discuss their embeddings
in W (F4). In Section 3 we compute the orbit
of W (F4) for an arbitrary highest weight Λ =
(a1a2a3a4), with (ai ≥ 0, i = 1, 2, 3, 4) and give
its decomposition under W (SO(9)). Section 4 is
devoted to the constructions of regular and semi-
regular polytopes and their cell structures where
we summarize the results in Table 3.

2. Quaternionic representation of the
Coxeter-Weyl group W (F4)

Let q = q0 +qiej , (i = 1, 2, 3) be a real unit quater-
nion with its conjugate defined by q̄ = q0−qiei and
the norm qq̄ = q̄q = 1. The quaternionic imaginary
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units satisfy the relations

eiej = −δij + ǫijkek, (i, j, k = 1, 2, 3) (1)

Here δij and ǫijk are the Kronecker and Levi-Civita
symbols and summation over the repeated indices
is implicit. With the definition of the scalar prod-
uct

(p, q) =
1

2
(p̄q + q̄p), (2)

quaternions generate the four-dimensional Eu-
clidean space. The group of quaternions is iso-
morphic to SU(2) which is the double cover of the
proper rotation group SO(3). Its finite subgroups
are classified as [8], infinite number of cyclic and
infinite number of dicyclic groups in addition to
the binary tetrahedral group T , binary octahedral
group O and the binary icosahedral group I which
are related to the ADE classification of the Lie al-
gebras [9]. An orthogonal rotation in 4D-Euclidean
space can be represented by the group elements of
O(4) [4] as

[a, b] : q → q′ = aqb, [c, d]∗ : q → q′′ = cq̄d, (3)

where a, b, c, d are unit quaternions and q can be
a quaternion with arbitrary norm. The finite
subgroups of O(4) follows the finite subgroups of
SU(2). The relevant finite subgroup of SU(2) here
is the binary octahedral group O which can be de-
composed as follows:

O = T ⊕ T ′. (4)

Here T represents the binary tetrahedral group
given by

T = {±1,±e1,±e2,±e3,
1

2
(±1±e1±e2±e3)}, (5)

and

T ′ = { 1√
2
(±1 ± e1),

1√
2
(±e2 ± e3),

1√
2
(±1 ± e2),

1√
2
(±e3 ± e1),

1√
2
(±1 ± e3),

1√
2
(±e1 ± e2)}. (6)

They can also be put in the form

T =

3
∑

a=0

{±ea ⊕ ±ωa ⊕±ω̄a} (7)

T ′ =

3
∑

a6=b=0

⊕ 1√
2
{±ea ± eb}

=

3
∑

a6=b=0

⊕ 1√
2
{±ωa ± ωb}

=

3
∑

a6=b=0

⊕ 1√
2
{±ω̄a ± ω̄b} (8)

Here we define

ω0 =
1

2
{1 + e1 + e2 + e3},

ω1 =
1

2
{1 + e1 − e2 − e3}

ω2 =
1

2
{1 − e1 + e2 − e3},

ω3 =
1

2
{1 − e1 − e2 + e3}. (9)

Let p, q ∈ O be arbitrary elements of the binary
octahedral group, then the set of elements

Aut(F4) ≈ W (F4) : Z2 = {[p, q]⊕ [p, q]∗} (10)

is the extension of the Coxeter-Weyl group W (F4)
by the diagram symmetry [3] as shown in Fig. 1.
The group structure in (10) follows from the group
generators obtained from Fig. 1.

1
√

2
(1 − e1 − e2 − e3)

r1

√
2e3

r2

4
(e2 − e3)

r3

(e1 − e2)

r4

FIG. 1: The Coxeter-Dynkin diagram of W (F4).

In general, the reflection generator r of an arbi-
trary Coxeter group with respect to a hyperplane
represented by the vector α is given by the action

r : Λ → Λ − 2(Λ, α)

(α, α)
α. (11)

When Λ and α are represented by quaternions
the equation (8) reads

r : Λ → − αΛ̄α

(α, α)
,
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and the generators of W (F4) would be given by

r1 = [
1

2
(1 − e1 − e2 − e3),

1

2
(−1 + e1 + e2 + e3)]

∗,

r2 = [e3,−e3]
∗,

r3 =
1

2
[(e2 − e3), (−e2 + e3)]

∗,

r4 =
1

2
[(e1 − e2), (−e1 + e2)]

∗. (12)

To represent the group elements of W (F4) in terms
of the elements of the binary octahedral group O
and identify its subgroup W (SO(9)) easily we in-
troduce the subsets of O defined by [3]

O = T⊕T ′ = {V0⊕V+⊕V−}⊕{V1⊕V2⊕V3} (13)

with

V0 =
3

∑

a=0

⊕± ea, V+ =
3

∑

a=0

⊕± ωa, V̄−

=
3

∑

a=0

⊕± ω̄a,

V1 = { 1√
2
(±1 ± e1)},

1√
2
(±e2 ± e3)},

V2 = { 1√
2
(±1 ± e2)},

1√
2
(±e3 ± e1)},

V3 = { 1√
2
(±1 ± e3)},

1√
2
(±e1 ± e2)}. (14)

They satisfy the multiplication table given in Ta-
ble I.

TABLE I: Multiplication table of the binary octahedral
group.

V0 V+ V− V1 V2 V3

V0 V0 V+ V− V1 V2 V3

V+ V+ V− V0 V3 V1 V2

V− V− V0 V+ V2 V3 V1

V1 V1 V2 V3 V0 V+ V−

V2 V2 V3 V1 V− V0 V+

V3 V3 V1 V2 V+ V− V0

It was shown in [3] that the elements of W (F4)
can be written as follows

W (F4) ≈ A ⊕ A∗. (15)

where

A = [T, T ]⊕ [T ′, T ′]

= {
∑

a,b

⊕[Va, Vb] ⊕
∑

i,j

⊕[Vi, Vj ]},

A∗ = [T, T ]∗ ⊕ [T ′, T ′]∗

= {
∑

a,b

⊕[Va, Vb]
∗ ⊕

∑

i,j

⊕[Vi, Vj ]
∗}, (16)

a, b = 0, +,−; i, j = 1, 2, 3.

One notes that the number of elements in (15) is
1152. The Dynkin diagram symmetry implies that

1 → 1√
2
(1 + e1), e1 → 1√

2
(1 − e1)

e2 → 1√
2
(e2 + e3), e3 → 1√

2
(e2 − e3) (17)

which can be generated by

Z2 = [
1√
2
(e2 + e3),−e2]. (18)

A left or right multiplication of W (F4) by Z2 would
extend the group W (F4) to the group Aut(F4) : Z2.
The group W (SO(9)) of order 384 is a maximal
subgroup of W (F4) with an index 3. It can be
represented as

W (SO(9)) ≈ B ⊕ C ⊕ B∗ ⊕ C∗ (19)

with

B = {[V0, V0] ⊕ [V+, V−] ⊕ [V−, V+]},
C = {[V1, V1] ⊕ [V2, V2] ⊕ [V3, V3]}. (20)

The group W (F4) can be expressed as the sum of
sets

W (F4) =

2
∑

i=0

⊕W (SO(9))di

= W (SO(9)) ⊕ W (SO(9))d ⊕ W (SO(9))d2

(21)

where the coset representative can be chosen as an
arbitrary element of d ∈ [V+, V0], say d = [ω0, 1].
The three conjugate groups of W (SO(9)) in W (F4)
can be written as

W (SO(9)), [ω0, 1]W (SO(9))[ω̄0, 1],

[ω̄0, 1]W (SO(9))[ω0, 1]. (22)

The two subgroups W (SO(7))L and W (SO(7))R

can be generated by the set of generators (r1, r2, r3)
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and (r2, r3, r4) respectively. Each W (SO(7)) can
be embedded in the group W (F4) in 24 different
ways as its 24 conjugates. However, W (SO(7))L

and W (SO(7))R are not conjugate to each other
in W (F4). We will show that the conjugacy be-
tween them will be restored when they are em-
bedded in Aut(F4). The prismatic groups (D3 ×
Z2)L and (D3 × Z2)R are generated by (r1, r2, r4)
and (r1, r3, r4), respectively, and they have simi-
lar conjugacy properties as W (SO(7)) subgroups.
Each (D3 × Z2) has an index 96 in W (F4) which
counts the number of triangular prismatic cells
of the given type. To work out the orbit struc-
ture of W (F4), we use a simpler representation
of W (SO(9)) that can be written as the semi-
direct product (:) of the elementary abelian group
Z4

2 = Z2 ×Z2 ×Z2 ×Z2 and the symmetric group
S4, that is, W (SO(9)) ≈ Z4

2 : S4 [6]. The genera-
tors of Z4

2 and S4 can be taken respectively as

[1,−1]∗, [e1,−e1]
∗, [e2,−e2]

∗ [e3,−e3]
∗ (23)

and

a =
1

2
[(1 + e2)], ω0(1 − e2)ω0]

∗, a4 = [1, 1],

b = [ω0, ω̄0], b3 = [1, 1]. (24)

Here the generators a, b of S4 permute the gener-
ators of the elementary abelian group Z4

2 by con-
jugation, therefore, Z4

2 is an invariant subgroup of
the group W (SO(9)) and the elements of S4 can
be compactly written as [5, 6]

S4 = {[p, ω̄0p̄ω0] ⊕ [t, ω0t̄ω0]
∗}, p ∈ T, t ∈ T ′.

(25)

It is isomorphic to the Coxeter-Weyl subgroup
W (SU(4)) of W (SO(9)) leaving the quaternion
ω0 invariant. The generators r2, r3, r4 generate
the subgroup

W (SO(7))R ≈ S4 × Z2 given by [5, 6]

W (SO(7))R ≈ S4 × Z2

= {[p, p̄] ⊕ [t, t̄] ⊕ [p, p̄]∗ ⊕ [t, t̄]∗} (26)

leaving the real unit quaternion 1 ∈ T invariant.
As for the other conjugate groups of W (SO(7))R,
each fixes one element of T . Similarly, the sub-
group W (SO(7))L ≈ S4×Z2 generated by r1, r2, r3

can be represented by

W (SO(7))L ≈ S4 × Z2

= {[p, c̄p̄c] ⊕ [t, c̄t̄c] ⊕ [p, cp̄c]∗ ⊕ [t, ct̄c]∗}
(27)

leaving c = 1√
2
(1 + e1) ∈ T ′ invariant, implying

that the conjugates of W (SO(7))L leave the el-
ements of T ′ invariant. Group structures of the
left-right prismatic groups will be discussed when
we study the cell structures of the relevant poly-
topes.

3. Orbit of the group W (F4) in terms
of quaternions

Let Λ = (a1 a2 a3 a4), (ai ≥ 0, i = 1, 2, 3, 4)
represents a vector with positive integer Dynkin
labels [7] which characterizes the irreducible rep-
resentations of the Lie group W (F4). Although
the simple roots in Fig. 1 are not representing
the true roots of the Lie algebra F4 since short
roots are converted to long roots, the same Lie
algebraic technique can be used to determine the
Coxeter-Weyl orbits, namely, one can determine
the vertices of the polytopes possessing W (F4)
symmetry using the highest weight technique with
Λ = (a1 a2 a3 a4), (ai ≥ 0, i = 1, 2, 3, 4). We
note in passing that the Dynkin diagram symme-
try implies (a1 a2 a3 a4) → (a4 a3 a2 a1). The
highest weight vector can be written as a linear
combination of the simple roots of Fig. 1,

Λ = x1α1 + x2α2 + x3α3 + x4

α4 = (x1, x2, x3, x4)
T C (28)

where C is the Cartan matrix of F4 with short
roots replaced by long roots,

A =











2 −1 0 0

−1 2 −
√

2 0

0 −
√

2 2 −1

0 0 −1 2











. (29)

Equation (28) determines the vector Λ in terms
of quaternionic units in the form Λ(0) = α0 +
α1e1 + α2e2 + α3e3 where the coefficients of the
unit quaternions are given by

α0 =
√

2(a1 +
3

2
a2) + 2a3 + a4,

α1 =
1√
2
a2 + a3 + a4,

α2 =
1√
2
a2 + a3,

α3 =
1√
2
a4. (30)

We can construct three weight vectors from
Λ(0) each transforming under the same group
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W (SO(9)) represented by (19). This can be
achieved by applying W (F4) given in (21) on the
highest weight Λ(0). Leading to the weight vectors
of the group W (SO(9)):

Λ(0) = α0 + α1e1 + α2e2 + α3e3,

Λ(1) = ω0Λ
(0) = α0ω0 − α2ω1 − α3ω2 − α1ω3

= β0 + β1e1 + β2e2 + β3e3, (31)

Λ(2) = ω2
0Λ

(0) = −ω̄0Λ
(0)

= −α0ω̄0 − α3ω̄1 − α1ω̄2 − α2ω̄3,

= γ0 + γ1e1 + γ2e2 + γ3e3.

Here βa and γa are some linear combinations of αa

and thereof ai, i = 1, 2, 3, 4. When we apply the
Coxeter-Weyl group W (SO(9)) expressed in equa-
tions (19) and (20) on the vectors given by (31) we
obtain 3 sets of W (SO(9)) orbits. For general vec-
tors, where the integers ai, i = 1, 2, 3, 4 take non-
zero values, each orbit has a size of 384 which leads
to the W (F4) orbit of size 384× 3 = 1152. To con-
vince the reader that the group W (SO(9)) has an
orbit of largest size 384 [6], we give the following
procedure for the construction of the W (SO(9))
orbits in terms of quaternionic weights. Since the
generators of the abelian group Z4

2 change the signs
of the quaternionic units 1, e1, e2, e3 its action on a
vector say Λ(0) would lead to the set of 16 quater-
nions

±α0 ± α1e1 ± α2e2 ± α3e3. (32)

The group S4 represented by the generators
in (19) simply permutes the quaternionic units
1, e1, e2, e3 when acting on (32) so that the size
of each W (SO(9)) orbit will be 16 × 24 = 384.
Repeating the same procedure on the other two
vectors Λ(1) and Λ(2) will yield to all vectors of the
orbit W (F4). In the next section, we will discuss
the structures of the regular and semi-regular
orbits in terms of quaternions.
Before we proceed further, a few more facts are
in order. Any subgroup acting in 3D-Euclidean
subspace leaves one of the vector invariant as we
have pointed out in the case of W (SO(7))L and
W (SO(7))R leaving c = 1√

2
(1 + e1) ∈ T ′ and

1 ∈ T invariant, respectively. In what follows
we prove two lemmas regarding the orbits of the
subgroups acting in 3D.

Lemma 1: All the vectors in an orbit of
H ⊂ W (F4), where H is a subgroup acting
in 3D-Euclidean space will have the same scalar
product with the vector q fixed by the subgroup H .

Proof: Let h be any quaternion in one of the orbit
of H . Let the scalar product between q and h
be given by (q, h) = 1

2 (q̄h + h̄q) = f , where f
is a scalar. Then it is straightforward to show
that (h′, q) = f where h′ = Hh. Therefore,
the classifications of the H-orbits in the orbits of
W (F4) are the classifications of the scalar values f .

Lemma 2: Let the set of quaternions Q repre-
sent the vertices of a regular or a semi-regular
polyhedra of W (SO(7))R within one of the orbit
of W (F4), where q is fixed by W (SO(7))R. Then,
rQ, r ∈ T represents the set of vertices of the of
the same regular or semi-regular polyhedra trans-
forming under the conjugate group W ′(SO(7))R

fixing the quaternion rq.

Proof: The proof is straightforward because
the scalar product (Q, q) = f is left invariant
under a left multiplication of quaternions, i.e.,
(rQ, rq) = f . This is also true for a right multipli-
cation of the quaternionic vertices by the elements
of T . This fact allows us to count the number
of cells of W (SO(7))R in W (F4) which is 24 and
determine all the vertices of the W (F4) orbit
by quaternionic multiplication. For the orbits
of W (SO(7))L, we have to take the quaternions
r ∈ T ′ to determine the vertices of the W (SO(7))L

cells. Similar arguments are valid for the prismatic
groups, but the choice of the quaternions r are
not as straight as it is here. These cases will be
discussed in the next section when the relevant cell
structure is of interest. However, we would like to
discuss the criteria about the existence of the regu-
lar prismatic cells in the orbits of the group W (F4).

Cells of the prismatic group (D3 × Z2)R

It is generated by r1, r3, r4 and acts on the quater-
nionic units as follows:

r3r4 = [ω̄0, ω0] : 1 → 1,

e1 → e3, e2 → e1, e3 → e2,

r1 = [ω̄0,−ω̄0]
∗ : 1 → ω0,

e1 → ω1, e2 → ω2, e3 → ω3. (33)

It is easy to check that the group (D3 × Z2)R

fixes the quaternion 3 + e1 + e2 + e3 = 2(1 + ω0).
Since the dihedral group (D3)R is a subgroup of the
group W (SO(7))R, one can find other generators
like (r3r4)

(a) = [ω̄a, ωa] in the group W (SO(7))R

and r
(a)
1 = [ω̄a,−ω̄a]; a = 0, 1, 2, 3 to determine

the conjugate groups of (D3×Z2)R without chang-
ing the generators of the group W (SO(7))R. New
copies of (D3 × Z2)R would yield further invari-
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ants resulting in 3 ± e1 ± e2 ± e3 (even (-) sign).
Multiplying this set of vectors by the elements of
T would lead to 96 quaternions which are fixed by
the conjugates of (D3 × Z2)R in W (F4). Using
Lemma 2 one can find the vertices of the 96 tri-
angular prisms by multiplying the vertices of one
prismatic cell by 96 unit quaternions.

Now we explain in which orbits the prismatic
cells occur. Let us apply the action of elements
of (D3×Z2)R in (33) on the highest weight Λ(0) =
α0 + α1e1 + α2e2 + α3e3 to create 6 vertices where
the coefficients αa, a = 0, 1, 2, 3 are given in (30):

α0 + α1e1 + α2e2 + α3e3,

α0 + α2e1 + α3e2 + α1e3,

α0 + α3e1 + α1e2 + α2e3,

α0ω0 + α1ω1 + α2ω2 + α3ω3,

α0ω0 + α2ω1 + α3ω2 + α1ω3, (34)

α0ω0 + α3ω1 + α1ω2 + α2ω3.

The first three and last three quaternions of (34)
each represents the vertices of triangles cyclicly
permuted by the group element r3r4. The edges
of the triangles are represented by the quaternions
in the cyclic order

a4e1 + a3e2 − (a4 + a3)e3,

a3e1 − (a3 + a4)e2 + a4e3,

−(a3 + a4)e1 + a4e2 + a3e3. (35)

In order the quaternions in (35) represent the edges
of an equilateral triangle the Dynkin labels should
satisfy the equation

a2
3 + a2

4 + a3a4 = 1 (36)

with the edge length
√

2. (36) is satisfied for either
a3 = 1, a4 = 0 or a3 = 0, a4 = 1. Two parallel
equilateral triangles are connected with the lines
parallel to the quaternion a1√

2
(1 − e1 − e2 − e3).

This would represent an edge of the triangular
prism with the length

√
2 if a1 = 1. Consequently,

the highest weights of W (F4), which will involve
triangular prisms, would be of the form (1a201)
and (1a210) where the label a2 can take any values
0, 1, 2, 3, . . . . But we will restrict our work with
a2 = 0, 1 because regular and semi-regular poly-
topes are obtained only from the highest weights
with the Dynkin labels ai = 0, 1; i = 1, 2, 3, 4.

Cells of the prismatic group (D3 × Z2)L

This subgroup generated by r1, r2, r4 has the fol-
lowing actions on the quaternionic units

r1r2 : 1 → ω0, e1 → ω1, e2 → ω2, e3 → −ω3

r4 : 1 → 1, e1 → e2, e2 → e1, e3 → e3. (37)

It leaves the quaternion 2 + e1 + e2 invariant. The
same invariant vector can be also obtained from
the invariant 3 + e1 + e2 + e3 = 2(1 + ω0) by using
the Dynkin diagram symmetry because the group
(D3×Z2)L is transformed to the group (D3×Z2)R

under the F4 diagram symmetry. Therefore, the
vertices of the prisms of (D3 × Z2)L can be ob-
tained from those of (D3 × Z2)R by letting 1 →
1√
2
(1 + e1), e1 → 1√

2
(1 − e1), e2 → 1√

2
(e2 +

e3), e3 → 1√
2
(e2 − e3). The Dynkin diagram sym-

metry would lead to the highest weights (10a21)
and (01a21) possessing the triangular prism, ver-
tices of which are transformed under the prism,
group (D3 × Z2)L.

4. The W (F4) orbits as regular and
semi-regular polytopes

Now, we can determine the vertices of the regular
and semi-regular polytopes in terms of quaternions
and study their cell structures. We note that the
regular and the semi-regular polytopes of any
Coxeter-Weyl group are obtained by assigning
to the Dynkin labels the integers 0 and 1 only.
The weights involving Dynkin labels with ai ≥ 2
represent orbits corresponding to the polytopes
possessing the same symmetry however edges,
faces, cells etc. are not regular.

Regular Polytope {3, 4, 3}-(24-cell) as
W (F4) orbit-(1000) and orbit-(0001)
The Coxeter-Weyl group W (F4) has only one reg-
ular polytope denoted by the Schlaffli symbol {3,
4, 3} which is self-dual. First, let us study the
orbit-(1000) because the other will follow from
the Dynkin diagram symmetry. If one substitutes
a1 = 1, a2 = a3 = a4 = 0 in (31) and applies the
action of the group W (SO(9)) on the weights

Λ(0) =
√

2, Λ(1) =
√

2ω0, Λ(2) = −
√

2ω̄0 (38)

Λ(0) leads to the set of quaternions
√

2V0 and the
other two would generate the same set of quater-
nions

√
2(V+ ⊕ V−). Therefore, they altogether

represent the set of quaternions
√

2T where T is
the binary tetrahedral group given by the quater-
nions in (5)and (7). That is to say, the 24-cell
decomposes under W (SO(9)) as 24=8+16. The
Dynkin diagram symmetry allows us to compute
the vertices of the orbit-(0001) leading to the qua-

terions
√

2T ′ where T ′ is defined in (6) and (8).
Since T and T ′ are transformed into each other
under the Dynkin diagram symmetry represented
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by Z2 = [ 1√
2
(e2 + e3),−e2] in (18) both orbits rep-

resent the same regular polytope, and are simply
rotated with respect to each other. That is why
it is called a self-dual polytope {3, 4, 3}. We will
work with one of these and investigate its cell struc-
ture. We will work in the set

√
2T ′, where the set

of 6 quaternions

1 ± e1, 1 ± e2, 1 ± e3 (39)

transform as the vertices of an octahedron under
the group W (SO(7))R defined by (26). This fixes
the quaternion 1, but otherwise permutes the set
of quaternions ±e1,±e2,±e3 representing the ver-
tices of an octahedron in the 3D-space orthogonal
to the quaternion 1. Of course, the quaternions
−1±e1, −1±e2, −1±e3 in 4D-space represent an-
other octahedron which is fixed by the same group
in (26). As we have discussed above, the group
W (SO(7))R can be embedded in 24 different ways
in W (F4) and where one of the quaternion of T
is fixed by the group W (SO(7))R. Therefore, we
obtain in each case a set of six vectors which rep-
resent the vertices of an octahedron. For example,
let us consider the group W (SO(7))R that leaves
ω0 = 1

2 (1 + e1 + e2 + e3) ∈ T invariant. Then, by
Lemma 2, a left or right multiplication of the set
of quaternions in (39) would give us the vertices of
the new octahedron

ω0{1 ± e1, 1 ± e2, 1 ± e3}
= {1 ± e1, 1 ± e2, 1 ± e3}ω0

= {ω0 ± ω1, ω0 ± ω2, ω0 ± ω3} (40)

in the space generated by the unit vectors
ω1, ω2, ω3. This proves that the orbit-(0001)
consists of 24 octahedral cells with 24 vertices.
The center of this octahedron is ω0 up to a scale
factor which is one of the vertices of the poly-
tope represented by the orbit-(1000). Actually,
the quaternion fixed by the group W (SO(7))R

represents the center of the polyhedron left
invariant by the group W (SO(7))L. One can
obtain the number of triangular faces from the

index |W (F4|
|D3×Z2| = 96. The number of edges can be

determined from the argument that there exists 8
nearest vertices to a given vertex which leads to
the 4 × 24 = 96 edges. The Euler characteristic of
the 4D polytopes κ = V − E + F − C = 0, where
V, E, F, C are the number of vertices, number
of edges, number of faces and number of cells,
respectively, is satisfied by all 4D-polytopes [8].

Semi-regular polytopes of W (F4) symmetry
There are 9 semi-regular polytopes left invariant

by the group W (F4). The polytopes here have
equal edge lengths but can be constructed from
different regular cells. Only 8 of them can be
obtained using the representation technique of
Lie algebra. The 9th, called the snub 24-cell,
cannot be derived with the technique discussed
here. Three of the 8 semi-regular polytopes
(Archimedean polytopes) are symmetric under
the Dynkin diagram symmetry and have larger
symmetry Aut(F4). Now, in turn, we discuss how
one determines the vertices of each semi-regular
polytope and study its cell structure.

The orbit-(0010) (rectified 24-cell)
It has the same structure with the orbit-(0100) be-
cause of the diagram symmetry. Therefore, we will
study only one of them, i.e., the orbit-(0010).This
orbit is represented by the highest weight Λ(0) =
2 + e1 + e2. One can apply the generators of
W (F4) and generate the 96 quaternionic vertices
of polytope which decomposes under W (SO(9)) as
96 = 64 + 32. We will not reproduce them here,
rather we will discuss their cell structure. This
polytope does not possess the prismatic cells as
we have discussed above. We will check now the
regular or semi-regular orbits of W (SO(7))R and
W (SO(7))L in the orbit-(0010). When we apply
the generators of W (SO(7))R of (26), we obtain
12 quaternions given by

Q = {2 ± e1 ± e2, 2 ± e2 ± e3, 2 ± e3 ± e1}. (41)

We note that the scalar part 2 of the quaternions
is fixed by the group W (SO(7))R. These vertices
represent a cuboctahedron in the space orthogonal
to the unit quaternion. Multiplication of these
quaternions by the elements of the binary tetra-
hedral group T in (5) would give 24 sets of vertices
of cuboctahedra TQ = QT and leading to a total
of 96 vertices. Repetition of some of the vertices
under multiplication must be noted. Application
of the group elements of W (SO(7))L on the high-
est weight Λ(0) = 2 + e1 + e2 would lead to the set
of quaternions

QL = {1 + 2e1 ± e2, 1 + 2e1 ± e3,

2 + e1 ± e2, 2 + e1 ± e3} (42)

which represents a cube, although it is perhaps not
quiet obvious to the reader. If one performs on (42)
the Z2 transformation of (17) or (18), one would
get the set of quaternions

QR =
1√
2
(3 ± e1 ± e2 ± e3). (43)
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This obviously represents the vertices of a cube
in a space generated by the unit quaternions
e1, e2, e3. The quaternions of (43) would be
obtained if the group W (SO(7))R is applied on
the highest weight (0100). Multiplication of the
set of quaternions of (42) by the elements of T ′

would not only give us the 96 elements of the
orbit-(0010), but also classify vertices of the 24
sets of cubes. Therefore, the orbit-(0010) consists
of 48 cells, made by 24 cubes and 24 cuboctahe-
dra. Number of edges 288 can be determined by
counting the number of nearest points to a given
vertex and the number of faces 240 can be easily
determined from the Euler formula.

The orbit-(0011) (truncated 24-cell)
We do not have prismatic cells in this poly-
tope. This orbit has the same structure as the
orbit-(1100) obtained by Dynkin diagram symme-
try. It has 192 vertices, which decomposes under
W (SO(9)) as an orbit of the size 192. The high-
est weight representing the orbit-(0011) is given by
Λ(0) = 3+2e1+e2. The application of W (SO(7))R

on this weight would fix 3 and permutes the quater-
nions e1, e2, e3 with a change of sign as well. The
result is

3 ± 2e1 ± e2, 3 ± 2e2 ± e3, 3 ± 2e3 ± e1,

3 ± e1 ± 2e2, 3 ± e2 ± 2e3, 3 ± e3 ± 2e1 (44)

representing the vertices of a truncated octahedron.
As we have discussed above, the multiplication of
(44) by T would lead to the 192 vertices of the poly-
tope and the classification of the vertices of cuboc-
tahedra invariant under the 24 conjugate groups
W (SO(7))R. Action of the group W (SO(7))L on
the same highest weight would lead to the quater-
nions

2 + 3e1 ± e2, 2 + 3e1 ± e3,

3 + 2e1 ± e2, 3 + 2e1 ± e3 (45)

representing a cube, although this is not so obvious
because these vertices are in the space orthogonal
to the unit vector 1√

2
(1+e1). Multiplying the set of

quaternions of (45) by T ′ would lead to the vertices
of 24 cubes in the orbit-(0011). If we perform the
Dynkin diagram symmetry on (45), we would get
the vertices of a cube in the orbit-(1100)

1√
2
(5 ± e1 ± e2 ± e3). (46)

In this orbit, we have 48 cells, 24 of each type,
cubes and truncated octahedra. In addition, it

has 240 faces and 384 edges.

The orbit-(0101) (cantellated 24-cell)
This orbit of size 288 decomposes under W (SO(9))
as 288 = 96 + 192. The highest weight here is
Λ(0) = (1 + 3√

2
) + (1 + 1√

2
)e1 + 1√

2
e2 + 1√

2
e3. The

action of W (SO(7))R on this weight will fix the
scalar part of the quaternion, change the signs of
e1, e2, e3 and then permute. Then the quaternions

(1 +
3√
2
) ± (1 +

1√
2
)e1 ±

1√
2
e2 ±

1√
2
e3

(1 +
3√
2
) ± 1√

2
e1 ± (1 +

1√
2
)e2 ±

1√
2
e3 (47)

(1 +
3√
2
) ± 1√

2
e1 ±

1√
2
e2 ± (1 +

1√
2
)e3

represent the 24 vertices of a small rhombicubocta-

hedron. Application of the group W (SO(7))L on
the highest weight would yield 12 quaternions

{(2 +
√

2) ± e1 ± e2, (2 +
√

2) ± e2 ± e3

(2 +
√

2) ± e3 ± e1} (48)

representing a cuboctahedron. Multiplying, either
the quaternions in (48) by the set T ′ or the
quaternions in (47) by the set T , will produce 288
quaternionic vertices of the polytope (0101) in the
form of 24 sets of quaternions representing the
vertices of the cells small rhombicuboctahedra and
cuboctahedra. This orbit has 96 prismatic cells
under the group (D3 ×Z2)L. The orbit consists of
144 cells, 720 faces, 864 edges and 288 vertices.

The orbit-(0110) (bitruncated 24-cell)
This orbit is symmetric under the Dynkin diagram
symmetry and has a larger symmetry Aut(F4). Its
highest weight in terms of quaternions is

Λ(0) = (2+
3√
2
)+(1+

1√
2
)e1 +(1+

1√
2
)e2 +

1√
2
e3

(49)

and has 288 vertices which under W (SO(9)) de-
composes as 288 = 96 + 192. The left and right
copies of W (SO(7)) will lead to the same type of
cell, though one of them is rotated with respect to
the other by the Z2 group element in (18). The
application of W (SO(7))R on the highest weight
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in (49) will lead to the quaternionic set

(2 +
3√
2
) ± (1 +

1√
2
)e1 ± (1 +

1√
2
)e2 ±

1√
2
e3,

(2 +
3√
2
) ± (1 +

1√
2
)e1 ±

1√
2
e2 ± (1 +

1√
2
)e3

and

(2 +
3√
2
) ± 1√

2
e1 ± (1 +

1√
2
)e2 ± (1 +

1√
2
)e3

(50)

representing the vertices of a truncated cube.
Application of Z2 on (50) will result in the vertices
of the truncated cube of the group W (SO(7))L.
Multiplication of the quaternions in (50) by the
set T will classify the vertices of the 24 truncated
cubes of W (SO(7))R and produce the 288 vertices
of the polytope. It has altogether 48 cells, 24
of which is fixed by the conjugates of the group
W (SO(7))L. The orbit has 48 cells, 336 faces 576
edges and 288 vertices. This polytope does not
possess cells of triangular prisms which follows
from the discussions in Section 3.

The orbit-(1001) (runcinated 24-cell)
The polytope has the larger symmetry Aut(F4)
since it is symmetric under the Dynkin diagram
symmetry. The highest weight here is Λ(0) =
(1+

√
2)+e1 which leads to an orbit of size 144. Its

decomposition under W (SO(9)) is 144 = 96 + 48.
The action of W (SO(7))R will result in the set of
quaternions

(1 +
√

2)± e1, (1 +
√

2)± e2, (1 +
√

2)± e3 (51)

which represents the vertices of an octahedron.
The vertices of the octahedron invariant under the
group W (SO(7))L are obtained by the action of Z2

group element in (18). 24 octahedra of W (SO(7))R

are obtained by multiplying the set of quaternions
in (51) by the elements of the binary tetrahedral
group T , which also produces the 144 quaternionic
vertices of the polytope. The same set of 144
quaternions can also be classified as 24 set of octa-
hedral vertices obtained from (51) by the action of
the Z2 group element and then multiplying them
by the set T ′ of quaternions. The discussion in Sec-
tion 3 indicates that this orbit has prismatic cells.
The action of the group elements of (D3 ×Z2)R in
(33) produces the six quaternions

(
√

2 + 1)e1, (
√

2 + 1)e3,

(
√

2 + 1)e2, (
√

2 + 1)ω0 + ω1,

(
√

2 + 1)ω0 + ω3, (
√

2 + 1)ω0 + ω2 (52)

representing the vertices of a triangular prism.
We obtained 96 sets of prisms with the techniques
discussed above. Since the symmetry group of the
polytope is Aut(F4) one obtains the prisms fixed
by the conjugates of the (D3 ×Z2)L by employing
Z2. Altogether we have 24 + 24 + 96 + 96 = 240
cells of the orbit-(1001). The polytope has then
144 vertices, 240 cells, 672 faces and 576 edges.

The orbit-(1011) (runcitruncated 24-cell)
The highest weight is the quaternion Λ(0) = (3 +√

2)+2e1 +e2. It has 576 vertices and decomposes
under W (SO(9)) as 576 = 192 + 384. The group
W (SO(7))R, fixing the scalar part of the quater-
nion, generates the set of quaternions given by

(3 +
√

2) ± 2e1 ± e2, (3 +
√

2) ± 2e2 ± e3,

(3 +
√

2) ± 2e3 ± e1, (3 +
√

2) ± e1 ± 2e2,

(3 +
√

2) ± e2 ± 2e3, (3 +
√

2) ± e3 ± 2e1, (53)

which represents the 24 vertices of a truncated octa-
hedron. Multiplication of these quaternions by the
set T will create 24×24 = 576 vertices of the poly-
tope (1011). Applying W (SO(7))L on the highest
weight of the orbit-(1011) would yield the set of
quaternions obtained from the following set

(1 +
5√
2
) ± (1 +

1√
2
)e1 ±

1√
2
e2 ±

1√
2
e3,

(1 +
5√
2
) ± 1√

2
e1 ± (1 +

1√
2
)e2 ±

1√
2
e3, (54)

(1 +
5√
2
) ± 1√

2
e1 ±

1√
2
e2 ± (1 +

1√
2
)e3

using Z2 = [ 1√
2
(e2 + e3),−e2] transformation. Of

course, the set of quaternions in (54) represent a
small rhombicuboctahedron. However, one should
keep in mind that the quaternions in (54) are
not the elements of the orbit-(1011) but belong
to the orbit-(1101) as a cell of W (SO(7))R. The
reason we displayed those quaternions in (54) is
because the vertices of small rhombicuboctahedron
are best known in this form. As we discussed in
Section 3 this orbit has a hexagonal prism under
the group (D3 × Z2)R and triangular prism under
the group (D3 × Z2)L. Therefore, it consists of 24
truncated octahedra, 24 small rhombicuboctahedra,
96 hexagonal prisms and 96 triangular prisms.
The orbit has 240 cells, 576 vertices, 1104 faces
and 1440 edges.
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The orbit-(0111) (cantitruncated 24-cell)
The highest weight here is the quaternion

Λ(0) = (3+
3√
2
)+(2+

1√
2
)e1+(1+

1√
2
)e2+

1√
2
e3,

(55)
which leads to the 576 vertices decomposing
under W (SO(9)) as 576 = 192 + 384. When the
group W (SO(7))R acts on this quaternion it will
produce 48 quaternions representing the vertices
of a great rhombicuboctahedron. Similarly, the
action of the group W (SO(7))L would produce the
vertices of a truncated cube. Either multiplying
the quaternionic vertices of the great rhombicuboc-

tahedron by the set T or the quaternionic vertices
of the truncated cube by the set T ′ will lead to
576 quaternionic vertices of the polytope (0111).
The vertices of its Dynkin symmetric polytope
(1110) will be obtained from the vertices of
(0111) by applying the group element Z2 in (18).
This polytope has a triangular prism under the
symmetry (D3 × Z2)L. The polytope overall has
144 cells, 576 vertices, 720 faces and 1152 edges.

The orbit-(1111) (omnitruncated 24-cell)
This is the largest W (F4) orbit with a size of
1152, which is the order of the Coxeter-Weyl group
W (F4) and naturally decomposes under W (SO(9))
as 1152 = 384 + 384 + 384. It is the last member
of the semi-regular polytopes of the group W (F4).
It is represented with the highest weight

Λ(0) = (3+
5√
2
)+(2+

1√
2
)e1+(1+

1√
2
)e2+

1√
2
e3.

(56)
The action of the left and right groups will pro-
duce the same type of cells. The action of group
W (SO(7))R would produce the vertices of a great
rhombicuboctahedron. This is obvious because (56)
differs from (55) only by the scalar part of the
quaternion left invariant by the group W (SO(7))R.
The action of group W (SO(7))L will produce 48
set of quaternions obtained from (56) by a Z2 ro-
tation. A multiplication of the 48 quaternions ob-
tained by the group W (SO(7))R by the 24 quater-
nions of the binary tetrahedral group T will pro-
duce exactly 48 × 24 = 1152 quaternionic vertices
of the polytope (1111). From the discussions in
Section 3, it follows that the orbit has hexagonal
prisms of two types that are Z2 symmetric with re-
spect to each other. The polytope has the symme-
try Aut(F4) of order 2304 having 1152 vertices,240
cells, 1392 faces and 2304 edges.

5. Conclusion

This paper dealt with the regular and semi-regular
polytopes of the Coxeter-Weyl group W (F4) and
its extension Aut(F4) by Dynkin diagram symme-
try. The classifications of the polytopes here can
be found in reference [10], but were obtained with-
out the technique discussed here. Determination
of the vertices of the polytopes with the highest
weight technique of Lie algebra and the symme-
try groups represented by quaternions are the two
novel aspects of our technique. The cells of a
given polytope are classified with their symmetry
groups that are the 3D-subgroups of the Coxeter-
Weyl group W (F4). As a reference we give the list
of the platonic and Archimedean solids transform-
ing under the Coxeter-Weyl groups W (SO(7)) and
W (SU(4)) in Table II. We present the polytopes
in Table III with the relevant cell symmetries as a
summary of what has been discussed in the paper.
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TABLE II: Platonic and Archimedean solids designated by Dynkin labels of W (SO(7))
and W (SU(4)) and prismatic polyhedra [5].

Symmetry Order Dynkin label Name Figure

W (SU(4)) 24 (100) or (001) Tetrahedron

W (SU(4)) 24 (110) or (011) Truncated tetrahedron

W (SO(7)) 48 (100) Octahedron

W (SO(7)) 48 (001) Cube

W (SO(7)) 48 (010) Cuboctahedron

W (SO(7)) 48 (110) Truncated octahedron

W (SO(7)) 48 (011) Truncated cube

W (SO(7)) 48 (101) Small rhombicuboctahedron

W (SO(7)) 48 (111) Great rhombicuboctahedron

D3 × Z2 12 Triangular prism

D3 × Z2 12 Hexagonal prism

D4 × Z2 16 Octagonal prism
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TABLE III: W (F4) orbits as regular and semi-regular polytopes.

Cell counts by symmetry Element counts

Dynkin W (SO(7))L (D3 × Z2)L (D3 × Z2)R W (SO(7))R Cells Faces Edges Vertices

label cells cells cells cells

(24) (96) (96) (24)

(0001) 24 96 96 24

(0010) 48 240 288 96

(0011) 48 240 384 192

(0101) 144 720 864 288

∗(0110) 48 336 576 288

∗(1001) 240 672 576 144

(1011) 240 1104 1440 576

(0111) 144 720 1152 576

∗(1111) 240 1392 2304 1152
∗ This orbit has the symmetry Aut(F4) ≈ W (F4) : Z2 of order 2304.
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