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In this paper, we have constructed a self-consistent system of Bianchi Type V I0 cosmology in five dimensions

with a binary mixture of perfect fluid and dark energy. The perfect fluid chosen here obeys the usual equation of

state p = ργ with 0 ≤ γ ≤ 1. The dark energy chosen is considered to be either the quintessence or Chaplygin gas.

Exact solutions to the corresponding Einstein’s field equations are obtained as a quadrature. The equation of state

parameter for dark energy ω is found to be consistent with the recent observations of SNe Ia data (SNe Ia data with

CMBR anisotropy) and galaxy clustering statistics. Here, our models predict that the rate of expansion of universe

would increase with passage of time. The physical and geometric aspects of the models are also discussed in detail.

1. Introduction

The study of higher-dimensional space-time is im-
portant because of the underlying idea that the
cosmos at its early stage of evolution of the uni-
verse might have had a higher dimensional era. In
the latest study of super-strings and super-gravity
theories, Weinberg [1] studied the unification of
the fundamental forces with gravity, which reveals
that the space-time should be different from four
dimensions. Since the concept of higher dimen-
sions is not unphysical, the string theories are dis-
cussed in 10-dimensions or 26-dimensions of space-
time. Because of this, studies in higher dimen-
sions inspired many researchers to enter into such
a field of study to explore the hidden knowledge of
the universe. Chodos and Detweller [2], Lorentz-
Petzold [3], Ibanez and Verdaguer [4], Gleiser and
Diaz [5], Reddy and Venkateswara [6], Adhav et
al. [7] have studied the multi-dimensional cosmo-
logical models in general relativity and in other
alternative theories of gravitation. Further, Mar-
ciano [8] has suggested that the experimental ob-
servation of fundamental constants with varying
time could produce the evidence of extra dimen-
sions. Rao et al. [9], Sahoo and Mishra [10], Tripa-
thy et al. [11,12] studied various aspects of cosmic
strings in various theories of relativity.

Recently, observed astronomical phenomena
have revolutionized the understanding of cosmol-
ogy. Dark energy is one of the central problems
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in theoretical physics and cosmology, and there
are many papers about dark energy, however still
there are many attempts to understand the na-
ture of dark energy. Dark energy is a special form
of energy that permeates all of space and tends
to increase the rate of expansion of the universe.
Dark energy is the most accepted theory to ex-
plain recent observations that the universe appears
to be expanding at an accelerating rate. Con-
sequences of combined analysis of Ia Supernovae
(SNe Ia) observations [13-18], galaxy cluster mea-
surements [19] and cosmic microwave background
(CMB) data [20] have shown that dark energy
causing cosmic acceleration dominates the present
universe. This acceleration is observed at a very
small red-shift showing that it is a recent phe-
nomenon in the late universe. Dark energy and the
accelerated expansion of the universe have been the
direct prediction of the distant supernovae Ia ob-
servations which are also supported, indirectly, by
the observations of the CMB anistropies, gravita-
tional lensing and the studies of galaxy clusters.
It is generally believed that the distant SNe Ia
observations predict an accelerating expansion of
the universe powered by some hypothetical source
with negative pressure generally termed as ‘dark
energy’. Supernovae at relatively high red shift are
found fainter than that predicted for an earlier-
thought slowing-expansion and indicate that ex-
pansion of universe is actually speeding up.

The paramount characteristic of the dark energy
is a constant or slightly changing energy density
as the universe expands, but we do not know the
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nature of dark energy very well [21-27]. Dark En-
ergy (DE) has been conventionally characterized
by the equation of state (EoS) parameter ω = p/ρ,
which is not necessarily constant. The simplest
DE candidate is the vacuum energy (ω = −1),
which is mathematically equivalent to the cosmo-
logical constant Λ. The other conventional alterna-
tives, which can be described by minimally coupled
scalar fields, are quintessence (ω > −1), phantom
energy (ω < −1) and quintom (that can across
from phantom region to quintessence region) as
evolved and have time dependent EoS parameter.
Some other limits obtained from observational re-
sults coming from SN Ia data [28] and SN Ia data
collaborated with CMBR anisotropy and galaxy
clustering statistics [29] are (−1.67 < ω < −0.62)
and (−1.33 < ω < −0.79), respectively. How-
ever, it is not at all obligatory to use a constant
value of ω. Due to the lack of observational ev-
idence in making a distinction between constant
and variable ω, usually the equation of state pa-
rameter is considered as a constant [30,31] with
phase wise value −1,0, 1/3 and +1 for vacuum
fluid, dust fluid, radiation and stiff fluid domi-
nated universe, respectively. But in general, ω is a
function of time or redshift [32,33]. For instance,
quintessence models involving scalar fields give rise
to time dependent EoS parameter ω [34-37]. Also
some literature is available on models with vary-
ing fields, such as cosmological model with vari-
able equation of state parameter in Kaluza-Klein
metric and wormholes [38]. In recent years various
form of time dependent ω have been used for vari-
able Λ models [39,40]. Recently Ray [41], Akarsu
and Kilinc [42] and Yadav et al. [43] have studied
dark energy model with variable EoS parameter.
Recently, it has been suggested that the change of
behavior of the missing energy density might be
regulated by the change in the equation of state
of the background fluid instead of the form of the
potential, thereby avoiding the above mentioned
fine-tuning problems. This is achieved via the in-
troduction, within the framework of FRW cosmol-
ogy, of an exotic background fluid, the Chaplygin
gas, described by the equation of state p = − q

ρc
where q being a positive constant.

Several authors have studied various aspects of
Chaplygin gas and further used it to obtain differ-
ent cosmological models. The generalized Chap-
lygin gas (GCG) [44] is a recent proposal in or-
der to explain the observed acceleration of the uni-
verse. This exotic fluid has been considered as an
alternative to quintessence and to the cosmologi-
cal constant, which are other serious candidates to

explain the accelerated expansion of the universe.
Many observational constraints have been obtained
for cosmological models based on the GCG [22].
This model gives the cosmological evolution from
the initial dust-like matter to an asymptotic cos-
mological constant with an epoch that can be seen
as a mixture of a cosmological constant and a fluid
obeying an equation of state p = ωρ. In particular,
the Chaplygin gas behaves as pressureless fluid for
small values of scale factor and as a cosmological
constant for large values of scale factor which tends
to accelerate the expansion. Mishra and Sahoo [45]
investigated kink space-time in scale invariant the-
ory with wet dark fluid, which is a candidate for
dark energy.

In the present paper, we have considered a
Bianchi type V I0 space-time when the universe is
filled with perfect fluid and dark energy. We also
study the dark energy, which is considered to be
either the Quintessence or the Chaplygin gas. The
physical and kinematical properties of the models
are also discussed.

2. Metric and Field Equations

The Einstein field equations are in the form

Rji −
1

2
δjiR = κT ji (1)

Where, Rji is the Ricci tensor, R is Ricci Scalar and
κ is the Einstein gravitational constant. We study
the gravitational field given by five dimensional
Bianchi Type V I0 cosmological model as choose
it in the from

ds2 = dt2 −A2dx2 −B2e−2m
2xdy2

−C2e2m
2xdz2 −D2e−2mxdψ2 (2)

Where the metric functions A ,B ,C, D are func-
tions of ‘t’ only and m is a constant.

The energy momentum-tensor of the source is
given by

T ji = (ρ+p)uiu
j − pδji (3)

Where, ui is the flow vector satisfying

giju
iuj = 1 (4)

Here ρ is the total energy density of perfect fluid
and dark energy while p is the corresponding pres-
sure. p and ρ are related by an equation of state,
p = γρ.
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In a co-moving system of co-ordinates form
(Eqn. (3)), we get

T 1
1 = ρ, T 2

2 = T 3
3 = T 4

4 = −p (5)

The Einstein field equations for the metric (Eqn.
(2)) can be obtained as

A
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Here afterwards the dash over field variable rep-
resents ordinary differentiation with respect to t.

From Eqn. (11), we obtained

AC = BD (12)

Let V be the function of time t defined by

V = ABCD (13)

From Eqns. (12) and (13), we obtained

V = A2C2 (14)

Now adding Eqns. (7), (8), (9), (10) and four times
of Eqn. (6), we found(
A

′′

A
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B

′′

B
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′′

C
+
D

′′

D

)

+2
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A2
=

4κ

3
(ρ− p) (15)

From Eqns. (13) and (15), we obtained

V
′′

V
− 6m4

A2
=

4κ

3
(ρ− p) (16)

The conservational law for the energy momentum
tenser gives

ρ
′

= −V
′′

V
(ρ+ p) (17)

3. Solutions

Here we discuss two cases:

Case I: When A =
√
V , then Eqn. (16)

reduces to

V
′′

V
− 6m4

V
=

4κ

3
(ρ− p) (18)

Now, from Eqns. (17) and (18), we have

V
′

= ±

√
2

[
2

3
κρV 2 + 3m4V + C1

]
(19)

Where, C1 is the integration constant.
Rewriting Eqn. (17) in the form

ρ
′

(ρ+ p)
= −V

′

V
(20)

We know that the pressure and the energy density
obeys an equation of state of type p = f(ρ). So
we conclude that ρ and p are function of V . Hence
the right-hand side of Eqn. (16) is a function V .
Now Eqn. (16) can be written as

V
′′

=
4κ

3
(ρ− p)V + 6m4 ∼= F (V ) (21)

From the mechanical point of view, Eqn. (21) can
be interpreted as equation of motion of a single par-
ticle with unit mass under the force F (V ). Then

V
′

= ±
√

2(ε− U(V )) (22)

Here ε also can be viewed as energy and U is the
potential energy of the force F.

Comparing Eqns. (19) and (22), we get

ε = C1 and U = −
(

2κ

3
V 2ρ+ 3m4V

)
(23)
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Finally, the solution to Eqn. (19) in quadrature
form can be written as∫

dV√
2

(
2κ
3 V

2ρ+ 3m4V + C1

) = t+ t0 (24)

Where the integration constant t0 taken as zero,
since it only gives a shift in time.

Case II: When C =
√
V , then Eqn. (16)

reduces to

V
′′

V
− 6m4 =

4κ

3
(ρ− p) (25)

Now, from Eqns. (17) and (25), we have

V
′

= ±

√
2

[
2

3
κρV 2 +

3

2
m4V 2 + C2

]
(26)

Where, C2 is the constant of integration.
As before, the pressure and the energy density

obeys an equation of state of type p = f(ρ). So
we conclude that ρ and p are function of V . Hence
the right-hand side of Eqn. (16) is a function V .
Now Eqn. (16) can be written as

V
′′

=
4κ

3
(ρ− p)V + 6m4 ∼= F (V ) (27)

From the mechanical point of view Eqn. (27) can
be interpreted as equation of motion of a single par-
ticle with unit mass under the force F (V ). Then

V
′

= ±
√

2(ε− U(V )) (28)

Here also ε also can be viewed as energy and U(V )
is the potential energy of the force F.

Comparing Eqns. (26) and (28), we get

ε = C2 and U(V ) = −
(

2κ

3
V 2ρ+

3

2
m4V 2

)
(29)

Finally, we obtained the solution to Eqn. (26) in
quadrature form as∫

dV√
2

(
2κ
3 V

2ρ+ 3
2m

4V 2 + C2

) = t+ t0 (30)

Where the integration constant t0 taken as zero,
since it only gives a shift in time.

4. Universe with Perfect Fluid and Dark
Energy

We consider the evolution of the Bianchi type V I0
universe filled with perfect fluid and dark energy.

ρ = ρPF + ρDE ; p = pPF + pDE (31)

The energy momentum tensor can be decomposed
as

T ji = (ρPF + ρDE + pPF + pDE)UiU
j

−(pDE + pPF )δji (32)

Here ρDE and pDE respectively denotes the dark
energy density and pressure whereas ρPF and pPF
denotes the energy density and pressure of the per-
fect fluid, respectively. The perfect fluid obeys the
equation of state

pPF = γρPF (33)

Where, 0 ≤ γ ≤ 1 is a constant.
Depending on numerical valuesof γ, it describes

the following types of universe

γ = 0 (Dust Universe) (34)

γ =
1

3
(Radiation Universe) (35)

γ = (0, 1) (Hard Universe) (36)

γ = 1 (Zeldovich Universe) (37)

In a co-moving frame, the conservation law of en-
ergy momentum tensor leads to the balance equa-
tion for the energy density.

ρ
′

DE+ρ
′

PF = −V
′

V
(ρDE+ρPF +pDE+pPF ) (38)

The dark energy is supposed to interact with it-
self only and it is minimally coupled to the grav-
itational field. As a result, the evolution for the
energy density decouples from that of the perfect
fluid and from Eqn. (38), we obtained the two bal-
ance equations as

ρ
′

DE +
V ′

V
(ρDE + pDE) = 0 (39)

ρ
′

PF +
V ′

V
(ρPF + pPF ) = 0 (40)

From Eqns. (32) and (39), we get

ρ
′

PF =
ρ0

V 1+γ
, pPF =

ρ0γ

V 1+γ
(41)

Where, ρ0 is an integration constant.
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5. Solutions with Perfect Fluid and Dark
Energy

Here we consider the cases where dark energy is
given by quintessence and represented by Chaply-
gin gas.

5.1. Dark energy by quintessence

Here the dark energy is given by a quintessence
which obeys the equation of state

pq = ωqρq (42)

where the constant ωq = [−1, 0]. From Eqns. (39)
and (46), we obtained

ρq =
ρ0q

V 1+ωq
; pq =

ωqρ0q
V 1+ωq

(43)

Where, ρ0q is an integration constant.

Case I: When A =
√
V , then the evolution

of V can be written as

V
′′

=
4κ

3

[
(1− γ)ρ0

V γ
+

(1− ωq)ρ0q
V ωq

]
+ 6m4 (44)

Eqn. (48) can be written in quadrature form as∫
dV√

2

[
2
3

(
κρ0V 1−γ + κρ0qV

(1−ωq)

)
+ 3m4V + C1

]

= t+ t0 (45)

Here t0 is a constant of integration and can be
taken as zero.

Case II: When C =
√
V , then the evolution

of V can be written as

V
′′

=
4κ

3

[
(1− γ)ρ0

V γ
+

(1− ωq)ρ0q
V ωq

]
+6m4V (46)

Eqn. (50) can be written in quadrature form as∫
dV√

2

[
2
3

(
κρ0V 1−γ + κρ0qV

(1−ωq)

)
+ 3m4V 2 + C2

]

= t+ t0 (47)

Here t0 is a constant of integration and can be
taken as zero. In the limit of high matter densi-
ties (γ = 1), the general solution of the gravita-
tional equations for Bianchi type V I0 cannot be
expressed in an exact analytic form.

5.2. Dark energy by Chaplygin gas

In this case, we consider the dark energy is repre-
sented by Chaplygin gas governed by the equation
of state given as

pc = − q

ρc
(48)

Where, q being a positive constant.
From Eqns. (39) and (52), we get

ρc =

√
(
ρ0c
V 2

+ q); pc = − q√
(ρ0c

V 2 + q)
(49)

Where, ρ0c is a constant of integration.

Case I: When A =
√
V , then the evolution

equation of (Eqn. (15)) for V can be written as

V
′′

=
4κ

3

[
(1− γ)ρ0

V γ
+
√
ρ0c + qV 2+

qV 2√
ρ0c + qV 2

]
+6m4

(50)
The corresponding solution in quadrature form is
written as∫

dV√
2

[
2
3κ

(
ρ0V 1−γ +

√
ρocV

2 + qV 4

)
+ 3m4V + C1

]

= t+ t0 (51)

Here t0 is a constant of integration and can be
taken as zero.

Case II: When C =
√
V , then the evolution

equation of (15) for V can be written as

V
′′

=
4κ

3

[
(1− γ)ρ0

V γ
+
√
ρ0c + qV 2+

qV 2√
ρ0c + qV 2

]
+6m4V

(52)
The corresponding equation in quadrature form as∫

dV√
2

[
2
3κ

(
ρ0V 1−γ +

√
ρ0cV

2 + qV 4

)
+ 3

2m
4V 2 + C2

]

= t (53)

where the second integration is taken to be zero.
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6. A Particular Case

When γ = 0

Case I: When A =
√
V . For C1 = 0, Eqn.

(42) reduces to∫
dV√

2

(
2
3κV ρ0 + 3m4V

) = t (54)

which gives

V =

(
1

3
κρ0 +

3

2
m4

)
t2 (55)

with the increase in t, the volume increases and
V →∞ as t→∞.

From Eqns. (41) and (59), we get

p = 0 (56)

and

ρ =
ρ0(

1
3κρ0 + 3

2m
4

)
t2

(57)

It should be noted that at the early stage of evo-
lution of universe when the volume scale V was
close to zero, the energy density of the universe
was infinitely large. On the other hand, with the
expansion of the universe i.e., with the increase of
V , the energy density ρ decreases and an becomes
infinitely large as V → 0. By using Eqns. (59) and
(60), we obtain

ω
′

=
p

ρ
= 0 (58)

From Eqns. (60), (61) and (62), it is observed
that for this particular value of γ, our model
represents dust universe. This is natural for
ordinary non-relativistic matter.

Case II: When C =
√
V . For C2 = 0, Eqn.

(44) reduces to∫
dV√

2

(
2
3κV ρ0 + 3

2m
4V 2

) = t (59)

which gives

V =
1

2

[
et
√
3m4

+

(
2κρ0
9m4

)2

e−t
√
3m4 −

(
4κρ0
9m4

)]
(60)

with an increase in t, the volume increases and
V →∞ as t→∞.

From Eqns. (41) and (64), we get

p = 0 (61)

ρ =
ρ0

1
2

[
et
√
3m4 +

(
2κρ0
9m4

)2

e−t
√
3m4 −

(
4κρ0
9m4

)]
(62)

It is noted here that when the volume scale V
is close to zero, at an early stage of evolution of
universe, the energy density of the universe is in-
finitely large. Moreover, with the expansion of the
universe, that is, with the increase of V , the energy
density ρ decreases and becomes infinitely large
when V → 0.

Using Eqns. (65) and (66), we again obtain

ω
′

=
p

ρ
= 0 (63)

Again from Eqns. (65), (66) and (67), it is observed
that our model represents the dust universe.

7. Conclusions

The Bianchi type V I0 universe has been consid-
ered for a mixture of a perfect fluid and dark en-
ergy in five dimensions. The solution has been ob-
tained in quadrature form. Here, it is interesting
to note that the inclusion of dark energy into the
system gives rise to an accelerated expansion of the
model. As a result, volume V approaches to infi-
nite quicker than it does when the universe is filled
with perfect fluid alone. The equation of state pa-
rameter for dark energy ω is found to be consis-
tent with recent observations. The energy density
ρ tends to zero as time increases indefinitely and
that it leads to singularities at t = 0. The signifi-
cance of the work satisfies the recent cosmological
observations that our universe experiences acceler-
ated expansion.
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