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Analytical Solutions of Schrédinger Equation with Generalized Hyperbolic Potential
Using Nikiforov-Uvarov Method

Akpan N.lkot
Theoretical Physics Group, Department of Physics, University of Uyo, Uyo, Nigeria

The exact solution of Schrodinger equation for gleeralized hyperbolic potential are presentedguie Nikiforov-
Uvarov method. The wave function and energy equatire each obtained analytically for the s-wavendostate. It is
shown that the result for this generalized hypechmbtential reduces to the standard Rosen-Morss;Hrdeller and Scarf

potentials as special cases.
discussed.

1. Introduction

The exact bound state solution of Schrddinger
equation can be obtained only for a few cases.
These exact solutions are very important to
guantum physics that can be understood through
such solutions [1-9]. Such solutions are also
valuable tools in checking and improving models.
Furthermore, numerical methods are being
introduced to solve complicated problems for some
limiting cases.

The hyperbolic potential plays a vital role in
atomic and molecular physics since it can be used
to model inter-atomic and inter-molecular forces
[10-11]. Among the extensively studied cases are
the Poschl Teller [12], the Rosen-Morse [13] and
the Scarf potentials [14]. However, some of these
hyperbolic potentials are exactly solvable, or guas
exactly solvable, and their bound state solutions
have been found [15].

The main aim of this paper is to present and
study a generalized hyperbolic potential from
which other hyperbolic potentials can be deduced
as special cases. We shall show that deduced
potentials are also exactly solvable and that their
energy spectrum and wave function have properties
closely related to those that characterized the
hyperbolic potentials. Different methods have been
adopted in solving the Schrodinger equation with
hyperbolic potential. These include Nikiforov-
Uvarov method (NU) [16], factorization method
[17], asymptotic iteration method [18], shape
invariant [19], and super symmetric quantum
mechanics (SUSYQM) [20]. The method used here
reproduces accurate analytical solutions for many
differential equations that have important
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The wave functionthedcorresponding energy equation for these speaies are also

applications in physics. For example, it can beduse
for equations of Hermite, Laguerre, Legendre,
Bessel, and Jacobi [21].

Motivated by the recent successes in obtaining
the bound state solutions for Schrédinger equation
with hyperbolic potentials [22], we attempt to stud
the bound state solutions for a generalized
hyperbolic potential using Nikiforov-Uvarov
method.

The plan of the article is as follows. In Sec. 2,
we review the Nikiforov-Uvarov method and
present the generalized hyperbolic potential and
limiting cases in Sec. 3. Sect. 4 is devoted tandou
state solutions of the radial Schrodinger equation.
Results and discussion are presented in Sec. 5,
while a brief conclusion is given in Sec. 6.

2. Review of the Nikiforov-Uvarov Method

The NU method is based on the solution of a
generalized second order linear differential
equation with special orthogonal functions.
Therefore, a non-relativistic Schrédinger equation
can be solved exactly using this method. For any
given real or complex potential, the Schrédinger
equation is reduced to a generalized equation of
hyper-geometric type with an appropriats s(r)
coordinate transformation. Thus, it can be written
as follows:

79 4 T (920 &)
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Where, g(s) and g(s) are polynomials of second
degree and (s) is a first degree polynomial.
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In order to find the exact solution to Eqn. (1),
we set the wave function as

@(s) = () x(s) ()

Substituting Eqgn. (2) into Eqn. (1) reduces Eqn. (1
into hyper-geometric type and given as

a(s)x"(s) +1(s)x'(s) + Ax(s) =0 ®3)

Where, the wave functiop(s) is defined as the
logarithmic derivative [16]

LACC)

4
#(s) o(s) @

Where1(s) , is at most a first degree polynomial.
Also, the hyper-geometric type functiog(s)

in Egn.(3) for a fixedn is given by the Rodriques
relation

B, d"
(9 ds [a"(9)p(s)] (5)

X.(8) =

Where, B, is the normalization constant and the
weight function,o(s) must satisfy the condition
[16]
(a(s)p(s))'=1(s)p(s) (6)
With
7(s) =7(s) +2n(s) (7)

For the weight functionp(s) to be satisfied, it is

necessary that the classical orthogonal polynomials
7(s) be equal to zero in an interval (a, b) and its

derivative at this interval ab(s) >0 be negative.
That is

r'(s)=0 8)

Thus, the function n(s) and the parametek
required for the NU-methods are defined as follows

(s) = Ulz_f + J[”—j] G +ko )

A=k+7'(s) (10)

The k-values in the square root of Eqgn. (9) are
possible to evaluate if the expression under the
square root must be the square of polynomials. This
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is possible if and only if its discriminant is zero
Therefore, the new eigenvalue equation for the
Schrédinger equation becomes

. n(n-1)o"

A=A, =-nr ,n=012... (11)

On comparing Egns. (10) and (11), we obtain the
energy eigenvalues.

3. Generalized Hyperbolic Potential

We define the generalized hyperbolic potential as

V,,.q(r) =aV, tanh@r) + bV, tant (ar)

-cV, sech’(ar) +d (12)

Where,V,,V, andV, are the depth of the potential,

anda, b, c andd are real numbers.
The limiting cases of the generalized hyperbolic
potential are as follows:

0] Rosen-Morse
When we setb=d =0, we obtain the Rosen-
Morse potential as

V,.00(r) =aV, tanh@r) —cV, sech’(ar)  (13)

(i) Poschl-Teller potential

Setting a=0,b=0,c=-c,d=0 we get the
Poschl-Teller potential as

Vioeo(r) =€V, sedh’(ar) (14)

(iii) Scarf potential

The Scarf potential is obtain from the
generalized potentials by settireg=0,c =0,d =0,
and we obtain

V,,00(r) =bV, tantf (ar) (15)

The generalized hyperbolic potential Egn. (12) and

its special cases Eqn. (13), Egn. (14) and Eqn). (15
are common models for inter-atomic and inter-

molecular forces. The special cases, Eqns. (13)-
(15), have been solved extensively by many authors
[22-26]. We seek to find the exact solution to Eqgn.

(12) and then deduce the special cases from the
general result.
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4. Solution of the Radial Schrodinger
Equation

The radial Schrédinger equation takes the form [27]

d2R(r)
dr?

+2UE-VORN =0 (16)

Substituting Eqn. (12) into Eqgn. (16) yields

?jf{ ilm[E aV, tanh@r) - bV, tanhr)

+cV, sech’(ar) —d]R(r) =0 @an

Now using anansatz for the wave function in the
following form [28-29]

R(r) =e 72F(r) (18)

This reduces Eqgn.
differential equation

(17) into the following

‘lrf “er +@[E (/2) +atanhr)

-btantf ar +csed12m -d]F(r)=0

(19)

Setting: s=tanhr) , we get

d d
—=(1-5)=
ar ( )

d2

= 1-
dr? =a'( S)

— +2a°s(l-s )— (20)

On substituting Eqn. (20) into Eqn. (19), we get
the generalized hyperbolic type equation as
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d2F(r) _2AS-9) oF
ds? (1-s?) ds

e s) [,6’3 +aV,s—£°[F(s)=0 (21)

Where, we have used the following dimensional
quantities

2m
B = W22 (cV, +bVy)

2
2m | (w
g2 =— 2[[5j +E+d+cV2J (22)

ha
Now comparing Eqns. (1) and (21), we get

a(s) = (1-5%),

o(s) = f°s® —as+e?

T(s)=-2s+a,
(23)

Inserting these polynomials into Eqgn. (9), we get
n(s) function as
-a 1

77(5)——"5

-4k + )2

+4as+ (o —4€? +4K) (24)

According to the NU method, the expression in the
square roots of Eqn. (24) must be the square of
polynomial. Thus, we find new possible functions
of n(s) for eachk-value as

{\/ﬁz v _[%T *52]5-\/[ﬁ2 +e? —[%]2 +52}

(25)




The African Review of Physics (2016)0026
Where

i)
=\/[[32 e —(%jz . 52]

a2 1—(%)} (26)

The polynomial of 7=7+2nhas a negative
derivative

2
r :—Zs—[\/ﬁ2 +&? —(%) +9° }S

2
+\/,82+52—(%j +6° 27)

Now, usingA =k + 7'(s) and its other definition
. n(n-)o"

U2
V2

Ay =-nr , we have

2
7'(s) =—2—J,82 + g2 —(%j +32  (28)

2
/l(s)=£2—ﬁ2—(£] ~Vu2 -v? —%x/uz—dz
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A, =2n+m/u? -2 +n(n-1) (30)

Equating Eqgn. (29) and Eqgn. (30), we obtain

g2 —(n—;l)\/uz —52 —Jut-v2 -5=0 (31)

2
Where, s = 52 + (i’] +2n+n(n-1).
a

Simplifying Eqgn. (31) and after a little algebrag w
obtain

[(n+1) _i] 1_[3)]2 i

40 2v 2

A(0-08 B i
40 2v 2_

+K(n—l) _i]/g‘* _ (”J’M—v—iz}:o
46 v 2

M

(32)

Solving Eqn. (32) explicitly and using Eqn. (22),
we obtain the energy spectrum for the Schrodinger
equation for the generalized hyperbolic potential a

2
(29)

2
e h g 4

22 (n+1)v-29
()

2

45/h/n i20v

B -

: (n+1v - 25)(1— (0/2)2)

In order to find the corresponding wave function,

we first evaluate the weight functiop(s) using
Eqgn. (6) and then write

(1— (a/z)z)(n +Vv-25

_ ((n+1)j/4(;/2d)/34 . (”+21)5+v-iz ~d-c-(w5f

(33)

Za-sH09)=(25-s+vpe @9
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2
Where,,u:\/,ﬁ’2 +&2 —(%) +02 and

v:\/,ﬁ’2 +g2 —(%T +02 .

Solving the first order differential of Eqn. (34)e
get

p9=a+9" 209" 4y (35)

Similarly, by substituting the values oi(s) and
o(s) into Eqgn. (4), we have
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P _ 1) -w-v) g @+ uty)
69 T @ 4w

after resolving into partial fraction. Integrating
Eqgn. (36), we obtain

\HUV-w NGAL
#(s)=(U+9) 4 (a-9) 4 (37)

Inserting the calculatego(s) and o(s) into the

Rodrique relation of Eqn. (5), we obtain the other
wave function as

~(u+v) KV gn Wi e H
Xn(9)=B,(0+s) 2 (1-9) 2 o (+s) 2 (@A-9 2 (38)
s
F(s) = Xn(9)9(5)

Where, B,, is the normalization constant. (u-v-c) (u+v+a) [wm

22
The polynomial solution of x,,(s) can be =N,@+s) * (@-s * P, (s)
expressed in terms of the Jacobi polynomials, (39)

which is one of the orthogonal functions, i.e.,
Xn(9)=Py 2 2 /(s). Hence the radial wave
function for the generalized polynomial becomes

o HU-V=w

RI)=N,e 2 (l+tanh@r)) 4 (l-tanh@r)) 4 P,2 2 (tanh@r))

5. Results and Discussion

We can make appropriate choices for the values of
the parameters in the generalized hyperbolic
potential to obtain the well known potentials as

stated before in Sec. 3. In Fig. 1, we plotted the
variation of the generalized potential with for:

a=11, b=05, V,=1MeV, V,=05MeV,
c=2, V,=002MevV, d=002MeV, and
fora =123, 4.

5.1. Rosen-Morse potential

For, b=d=0, we obtain the Rosen-Morse
potential as given in Eqgn. (13). In Fig. 2, we
plotted the variation of Rosen-Morse potential with
rforr a=-1, V,=1MeV, c¢=2, and
V, = 002MeV , and fora = 1,23 and 4.

The total radial wave function of the Schrddinger
equation for the generalized hyperbolic potential
can be constructed in compact form using Eqgns.
(18) and (39) as

UV U v-p

(40)

Fig1. A plot of generalized hyperholic potential with rfor a=1, 0.01, c=2,
d=0.02, V,=1Mev, V,=0.5Mev, V,=0.02MeV and a=1, 2, 3and 4
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Fig2. Variation of Rosen-Morse potential with r for a= -1, b=0, ¢c=2, d=0,
Vy=1MeV, V,=0.5MeV , V,=0.02MeV with various parameter of

a=1,2,3and 4
YL,
(n+Hv-20
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The corresponding energy eigenvalues is obtained
from Eqn. (33) as

52
E= Am
h7
Aoy m

i2v

2 2
w
st
(v 25)(1— (a/z)zj
2_2mc o 2m|( w 2
Whereﬁ2=h—2, 52—?([5] +E+cV2J
2
and ='= ,6"2+(%)j +2n+n(n-1).

wr H-V'-w

R(r)=N,e 2 (L+tanh@r))

Where 1/'= B2+£?-0% andv'=yB2+e2-0% .

5.2.  Poschl Teller potential

For a=b=d=0 and c=-c, the generalized
hyperbolic potential transforms to the Poschl-
Teller potential given in Eqn.(14). In Fig. 3, we
display the plot of Poschl-Teller potential versus
for c¢=-2, and V,=002MeV. The

corresponding energy equation and wave function
for this potential are

(l-tanh@r)) 4 P,2°

A

B -
(1—(0/2)2)(n+1)v—25 A

(41)

The wave function of the Rosen-Morse
potential is obtain from Eqgn. (40) as

HHV'rw  p+tv v-u

2 (tanh@r)) (42)

vl S TR O a=1

———q=2
— =3
—_—a=4

Fig3. Aplot of Poschl-Teller potential with r for a= 0, b=0, ¢=-2, d=0,
V=1MeV, V,=0.5MeV, V,=0.02MeV with various parameter of
a=1,2,3and4



The African Review of Physics (2016)0026 227

hZﬁ-Z
2
w
E=—M _+c-| 2 43
o HERE
(3]
ok
_a H V-G HAVHw [ Vg
R(r)=N,e 2 (l+tanh@r)) 4 (l-tanh@r)) 4 P, 2 2 (tanh@r)) (44)
N 5.3. Scarf potential
Where ﬁ,z__ZrchO f=|p2+e?-| &£ , P -
' e v M= 2 | The generalized hyperbolic potential transforms to
) the standard Scarf potential, as given in Eqn. (15)
oo (aE when we sea=c=d =0. In Fig.4, we plotted the
V= Bren o and variation of this potential as a function of for
) b=005 andV, =1IMeV and a = 123and 4. The
5'2:@ (ﬁ’j +E-cV, corresponding energy equation and wave function
h for this potential are
3272
hep 2
E=—M | = 45
g 2 (@5)
8]
2
_a 7w BT B 7R
R(r)=N,e 2 (L+tanh(r)) @-tanh@r)) 2 P,2 " 2 (tanh@r)) (46)
p—_y 2 6. Conclusion
— ml =_ |52, = GE
Where, B° = 2 L, N=\/ﬁ2+52‘[7) , In this paper, the bound state solutions of the
Schrédinger equation (SE) with a generalized

— ey o (@) potential have been investigated within the
V= +te ‘(7) and framework of the Nikiforov-Uvarov method. To
the best of our knowledge, this potential has never
,_2m[(w) been evaluated in compact form as we obtained
£ =7 (_j +E above. We discussed the exact solution of the SE
with this potential for S-wave bound states. We
obtained explicitly energy eigenvalue equation and
the eigen function of the SE equation for the

WD //// generalized hyperbolic potential. As special cases
N R Rosen-Morse, Poschl-Teller and Scarf potentials

v 1 i
s L1 were discussed.

vy I
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