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In this article, present an application of Gen&alativity theory to the oblate spheroidal spacetith metric tensor for
this gravitational field is constructed along withld equations and various solutions are suggestisd, the motion of test
particles and photons in this field are investigafEhe gravitational field Lagrangian is constraicéend then used to derive
the expression for energy and angular momentumeceason. This expression for the conservationngfudar momentum
does not depend on gravitational potential. It isthe same form as in the Schwarzschild space tim& Newton's
dynamical theory of gravitation. The effect of tbklate spheroidal nature of the Sun and planetsoome gravitational
phenomena is also investigated. The metric terssoséd to predict theoretical values for the Pdrelka experiments if it
were performed on other planets. The shift in fezgy is obtained ag 02578 x 107 for planet Earth. This value is quite

close to that obtained by Pound and Rebkal 245 x 107 .

1. Introduction

Recently [1-5], we introduced an approach to
obtain the metric tensor exterior to a static ablat
spheroidal mass. Here, we present our major results
and outline their physical significance. A covatian
metric tensor having six non-zero components is
constructed. This tensor is used to derive Einstein
gravitational field equations interior and exterior

the oblate spheroid. Solutions are also constructed
for these field equations. To authenticate the
validity of this approach, gravitational phenomena
such as gravitational time dilation, gravitational
length contraction and gravitational spectral shift
are studied in the gravitational field exterior to
astrophysical bodies in the Solar System.Basically,
emphasis is made on gravitational sources with
time independent  and axially-symmetric
distributions of mass within oblate spheroids,
characterized by two typical integrals of geodesic
motion, namely, energy and angular momentum.
From an astrophysical point of view, although such
an assumption is not necessary, it could prove
useful because of its equivalence to the assumption
that the gravitational source is changing slowly in
time so that partial time derivatives are negligibl
as compared to the spatial ones. It is stressed tha
the mass source considered is not the most aspitrar
one from a theoretical point of view. On the other
hand, many astrophysically interesting  systems
are usually assumed to be time independent (or
static from another point of view) and axially
symmetric continuous sources [6].
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2. Metric Tensor Exterior to a Homogeneous
Oblate Spheroid

This section outlines the construction of the
covariant metric tensor exterior to a homogeneous
oblate spheroid.

In order to obtain a metric tensor for this
gravitational field, we let a spherically symmetric
body (“Schwarzschild’s body”) to be transformed
through deformation into an oblate spheroidal body
in such a way that its density, and total masi

remain the same and its surface parameter are
given in oblate spheroidal coordinates [7] as

&=¢&,, constant Q)
Then, we remark that the general relativistic field
equations, exterior to an oblate spheroidal bory, a
mathematically equivalent to those of the spherical
symmetric body. This is because, they are both
tensorially the same. Hence, they are only related
by the transformation from spherical to oblate
spheroidal coordinates. Therefore, to get the
corresponding invariant world line element in the
exterior region of an oblate spheroidal mass, the
function,f(r), (an arbitrary function in the
spherically symmetric field) is replaced by the
corresponding function f (7,&) exterior to a
homogeneous oblate spheroidal body. A sound and
astrophysically satisfactory approximate expression
for the function f (r7,£) is obtained by equating it

to the gravitational scalar potential exterior be t
distribution of mass within oblate spheroidal
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regions [8]. Next, coordinates are transformed from
spherical to oblate spheroidal as

(ct,r,8,9) ~ (ct,7.&,9) 2)

on the right-hand side of the line element. A
simplification yields the following components of
the metric tensor in the region exterior to a
homogeneous oblate spheroid in oblate spheroidal
coordinates [2]

9 =(1+ 5 10.6)) )

g2 l:/f(lf(/]E)J Lwo) @)
&7 @) |
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= 0=, 52_,7{1 #gr0o) |
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933:_a2(1+<{2)(1_’72) (7)

g, =0, otherwise (8)

This metric has been very instrumental in our
development of general relativistic mechanics in
gravitational fields exterior to homogeneous oblate
spheroids. The covariant metric tensor obtained for
gravitational fields exterior to oblate spheroidal

masses has two additional non-zero components,
g,, and g,,, which are not found in Schwarzschild

field.

Thus, the extension from Schwarzschild field to
homogeneous oblate spheroidal gravitational fields
has produced two additional non zero tensor
components and thus this metric tensor field is
unique. This confirms the assertion that oblate
spheroidal gravitational fields are more complex
than spherical fields and consequently general
relativistic mechanics in this field is more invet\,

3. Field Equations Exterior to an Oblate

Spheroid
Here, the metric tensor is used to derive
gravitational field equations exterior to a

homogeneous oblate spheroidal mass.
After the construction of the covariant metric
tensor, the following standard method is used to
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derive field equations exterior to a homogeneous
oblate spheroid. To obtain the contravariant metric
tensor for the gravitational field exterior to an

oblate spheroidg”, we use the fact thag” is
the cofactor ofg ,, in g divided by g [9]. Thatis

cofactorof g, ing ©)
g

wo—

Where,

(10)

The coefficients of affine connection 7, for any

gravitational field are defined in terms of the
covariant and contravariant metric tensor of space-
time as [9];

(11)

r/fv = } ggv(gpv,/l + gwl,y - g/J/\,V)

2

Where, the comma denotes partial differentiation
with respect toA, 4 and v. We have constructed

the known 64 coefficients of affine connection for
this gravitational field [10]. The curvature tensor

the Riemann-Christoffel tensdr’, for this field

apfo
is defined in terms of the coefficients of affine
connection [11] as

+rE,Me-rere, (12

aoc' &f

r5

—ro
r ap.o

)
Raﬂa ao,p
Where, the comma denotes partial differentiation
with respect tg8 andos. We have also constructed
the 256 components of this tensor for homogeneous

oblate spheroidal gravitational fields. From the
curvature tensorR’, for this gravitational field,

apfo
we have defined a second rank tensyy (called

the Ricci tensor) for the gravitational field exter
to the oblate spheroid [11] as

R, = R;&S

" (13)

The 16 components of this tensor for the static
homogeneous oblate spheroids have been
constructed. From the Ricci tensor for our
gravitational field, we deduced a scaRdefined

by
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R=R{ =g”R,, (14)

This is called the curvature scalar for homogeneous
spheroidal fields.

It is well known that for a region exterior to any
astrophysical body, the general relativistic field
equations are given tensorially as [12]

G, =0 (15)

Hv

Where, G,, is the Einstein tensor and given
explicitly as

1
Guu = R/xv _ERg v (16)

Where, R, is the Ricci tensorR the curvature
Scalar andg,, is the covariant metric tensor for

the field. The Einstein field equations for the

gravitational field exterior to homogeneous oblate
spheroids are then built up. The field equations
obtained [10] can be written more explicitly in

terms of the metric tensor and affine connections
(see Appendix). The derived gravitational field

equations are second order partial differential
equations that can be solved and interpreted t&ll i

mathematically possible solutions may then be
distinguished by physical considerations, such as
consistency with astrophysical or astronomical
observations, the data and facts. Hence, in
principle, our arbitrary function,f (7,¢£), which

uniquely and completely determines the solution of
Einstein’s gravitational metric tensor field exaeri

to the static homogeneous oblate spheroidal mass
or pressure distributions can be found.

4. Solutionsto Gravitational Field Equations
Exterior to Oblate Spheroid

In this section, solutions to the field equations
exterior to homogeneous oblate spheroidal masses
are constructed.

By assuming that any two of the field equations
possess a common simultaneous solution of the
function,f (7,é), a number of mathematical

contradictions arise. Therefore, it is concludeat th

in the space time exterior to a static homogeneous
distribution of mass within a homogeneous oblate
spheroidal region in the universe, no two field

equations possess any common  solution.
Consequently, these field equations may only be
solved separately and their different solutions
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applied whenever and wherever necessary and
useful in physical theories.
We outline the solution for the third field equatjo
which can be written in terms of the metric tensor
and Ricci tensor as
-0"R,-9"R,-gR,+9R29'R,=0  (17)
Writing various terms of Eqn. 17 explicitly in tesm
of the metric tensor only, we obtain our explicit
field equation. Now, we realize that our covariant
metric tensor, Eqns. 3-8 can be written as

g!“’ (O’E):hw ('7"5)"' f;w ('7:'5) (18)

Where, h , (n,¢) are the well-known pure empty

space components andf , (77,¢) the

contributions due to the oblate spheroidal mass
distribution. Consequently, as the mass distriloutio
decays out, ie., f, (7,§) -0, it leads to

are

9,,¢) -h,n¢). That is, the metric tensor

reduces to the pure empty space metric tensor as
the distribution of mass decays out.
Also,

a* (n.&)=n""(n.&)+ t# (n.&) (19)
Where, h* (r7,£) are the well-known pure empty

space components andf“®(n,&) are the
contributions due to the oblate spheroidal mass
distribution [10].

To begin the explicit formulation of thdR,,
field equation, first of all we note that all terrof
the order ofc® cancel out identically since the
empty space time metric tensby, independently
satisfies the homogeneou®,, field equation.

Therefore, the lowest order term we expect in the
exterior R, field equation isc™term. Hence, in
order to formulate the exterioR,, field equation

of order, ¢, we decompose our covariant metric
tensor g, into pure empty space pah,, (of
order ¢ only) and the nonempty space pdrj,

of order ¢ or higher). Similarly, let the contra-
variant metric tensog*’ be decomposed into pure
empty space parh* (of order ¢° only) and the
nonempty space partf #“  (of order c? or
higher).
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Substituting explicit expressions for Eqns.18
and 19 from [10] into Egn. 17 and neglecting all
terms of orderc’, the exteriorR,; field equation

can be written as;
Ki.)f, +K, (7., +K (7,8 f +
K.(7,8)f, +K,(7,6) f, +Ks(7,6)f =0 (20)

Where, K, (17,£), i =1...6 are functions of(77,¢) .
In the exterior oblate spheroidal space time [8]

§=¢,and -1<n <1;&, = cons tant
(21)

Let us now seek a solution for tie,, field (Eqgn.
20) in the form of a power series as
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f(.6)=Y P ()" (22)

Where, Pn+ is a function to be determined for each

value ofn.
Substituting the proposed function into the field
equation and taking into consideration the fact tha

{/7"}10 is a linearly independent set, we can equate

the coefficients of?” on both sides of the obtained
equation.

From the coefficients of7’ of, we obtain the
equation

0=a%¢(1+ &7 -a% ‘)P (£)+ 2% (W ) R €)] +a ¥ °(1r & P €)
+alE 1+ )[R (E)] + 1+ €N (-1- 2% -¢-a% + T Y[R €)

+[2a%¢ (a- 267 -a'¢"-a'€ ) Ry €)

This equation (Eqn. 23) is the first recurrence
differential equation for unknown functions. Alleth
other recurrence differential equations can follow
from it vyielding infinitely many recurrence
differential equations. These can be used to
determine all the unknown functions.

The following points can thus be made. Firstly,

Eqn. 23 determined?,” in terms of P, and P".

Similarly, the other recurrence differential
equations will determine the other unknown
functions, P, ..., in terms of P/ and P’.

Secondly, we note that we have the freedom to
choose our arbitrary functions to satisfy the
physical requirements or needs of any particular
distribution or area of application.

Let us now recall that for any gravitational field
[13],

Uy 01+ %cb (24)
c
Where, ® is Newton's gravitational scalar

potential for the field under consideration. Thus w
can then deduce that the unknown function in the
field equation can be given approximately as

f(n,&)00" (n,¢) (25)

(23)

Where, @ (17,£) , is Newton’s gravitational scalar

potential exterior to a homogeneous oblate
spheroidal mass. Recently [14], it has been shown
that

" (17,$) = BQ(-I§)Py(7) + BRL(-IE)PL7) (26)

Where, Q, and Q,
linearly independent of Legendre polynomidhs
and P,, respectively, anB, and B, are constants.

Let us now seek our analytical exterior solution
(Egqn. 22) to be as close as possible to the
approximate exterior solution (Egn. 23). Now,
since the approximate solution does not possesses
any term in the first power of , let us choose

are the Legendre functions

P, (£) = ByQ,(—i&) + B,Q,(-i¢) (27)
and
P'(E)=0 (28)

Hence, we can writd>, (&) in terms of B, () as;
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s (awery oo 2(1+&?) (st -t
P, () = i+ _azy)[Po (&)] ey [P (&) ]
1_2a3{2_a7{4_a7{6+a3 .
-2 P
a8t (1r &7 -ay) 1 o (29)

We now remark that the first three terms of our
series solution converge everywhere in the exterior
space time. We also remark that our solution of the
order c® may be written as

fr@.8)=0"(n.&)+®50.¢) (30

Where, ®" (r7,£) is the corresponding Newtonian

gravitational scalar potential an®; (77,¢) is the

pure Einsteinian (general relativistic) or post
Newtonian correction of the order .

Hence, we deduce that our exterior analytical
solution is of the general form

(. 6)=0"(,6)+®;(7.6)+ > ©3,07.6)
(31)

Interestingly, the single dependent functfom our
solution turns out to be the corresponding well
known pure Newtonian exterior gravitational scalar
potential augmented by hitherto unknown pure
Einsteinian (or general relativistic or post-
Newtonian) gravitational scalar potential terms of
ordersc®,c?,c™,.... Hence, this solution reveals
a hitherto unknown sense in which the exterior
Einstein’s geometrical gravitational field equation
are obtained as a generalization or completion of
Newton’s dynamical gravitational field equations
[10].

5. Motion of Particles of Non-zero Rest
M asses

In this section, we study the motion of particlds o
non-zero rest masses in homogeneous oblate
spheroidal space time.

The general relativistic equation of motion for
test particles and the coefficients of affine
connection for the gravitational field exterioraa
oblate spheroidal mass are used to study the motion
of particles of non-zero rest masses in this figld
The time equation of motion is obtained as

o 2121 (,7,5))‘1[,7 o (1.6) , O ((r/,f))}. “o

2 2 0,7 ag(
(32)
The solution of Egn. 32 is given as
2 -1
t:£l+czf(/7,£)j (33)

Egn. 33 is the expression for the variation of the
time on a clock moving in this gravitational field.
is of same form as that of Schwarzschild’'s
gravitational field.

Similarly, the 7 equation of motion is obtained

as

[+ ToCt? +Tifp 24T 58 "+ T 3™+ 20 15¢ =0
(34)

The & equation of motion is given as;

E+TLCH T I T ST % 2 E=0
(35)

The azimuthal equation of motion is obtained as

g+2rljjg+ 2Mojg=0  (36)

The solution of Egn. 36 is given as

' (37)
1-n°)(1+ ¢7)
Where,| is a constant of motion. The constalnt,
physically corresponds to the angular momentum
and hence Eqn. 37 is the law of conservation of
angular momentum in this gravitational field. It
does not depend on the gravitational potential and
is of same form as that obtained for
Schwarzschild’'s and Newton’s dynamical theory of
gravitation.

1
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6. Planetary Motion and Motion of Photons

Here, the gravitational field Lagrangian is
constructed and used to study the planetary motion
and the motion of photons in the equatorial plaine o
homogeneous oblate spheroids.

The Lagrangian in the equatorial plane of a
homogeneous oblate spheroidal mass is obtained
[2] as

1 (142
L—C{ (1+sz

(f)j = ‘::(1 Cf(f)J Fea (1+52)¢f]

(38)

Using the Euler-Lagrange equations for a
conservative system in which the potential energy
is independent of the generalized velocities, it is
shown that

(1+%f(£)]t‘=k
C

Where, k is a constant. This is the law of
conservation of energy in the equatorial plane of
the gravitational field exterior to an oblate
spheroidal mass [2].

Also,

k=0 (39)

(1+ 52)¢: [=0 (40)

law of
the

Where, | is a constant. This is the
conservation of angular momentum in
equatorial plane of the gravitational field exteltio
an oblate spheroidal body.

It is well known [12] that the Lagrangiah=[1,
with O=1 for time like orbits andd=0 for null
orbits. Setting L =00 in Eqgn. 38, squaring both
sides and substituting Eqns. 39 and 40 yields

al?

e 1127 (g =e
(41)

az {2
1+

In most applications of general relativity, the
shape of orbits (that is as a function of the
azimuthal angle) is of more interest than theiretim
history. Hence, it is instructive to transform E¢fh.
into an equation in terms of the azimuthal angle

Now, using the transformationg = & () an
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(@—L an equivalent form of Eqn. 41 is

{@

obtained as

2 2 2 22
1 3((111} LU 2[1+32f(u)j—25 fz(u):c 02 +1
(1+u2) dg) 1+u c al

al?
(42)
Differentiating Eqn. 42 yields
d’u du (U+U2) 2
W_?)U(l"'u )d¢ T(UZ_U+ 2)(1+§f (J))
_1+U22 222 2 _ 2.2\ O
_(ad] (a%c%?-02-0%u )Ef(u)
(43)

For time like orbits 0=1), Eqgn. 43 reduces to

d?u

d u+u?
Fra 3u(1+u2)$+%(u —u+ 2)(
(1+0?
_[ acl

] (azczu2

f(u)j

1—u2);—uf(u)
(44)

This is the newly derived planetary equation of
motion in this gravitational field. It can be sofve
to obtain the perihelion precision of planetary
orbits.

Light rays travels on null geodesic§l£0).
Thus Egn. 43 becomes

2 2
AU _gyaeyny U U+’
d¢’ do 2

(? —u+2)(1+c—22 f(u)j =

—(1+U)

w @ (45)

In the limit of special relativity, some terms in
Eqgn. 45 vanish and the equation becomes

2
g:; —3u(1+u2)g—z)+—(u +2u )(uz—u+ 2): 0

(46)

Egn. 45 is the photon equation of motion in the
vicinity of a static massive homogeneous oblate
spheroidal body. For the solution of special
relativistic case, Eqn. 46 can be used to solve the
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general relativistic equation (Eqn. 45). This can b
done by taking the general solution of Eqn. 46€0 b
a perturbation of the solution of Eqn. 45. The
immediate consequence of this analysis is that it
will produce a new expression for the total
deflection of light grazing a massive oblate
spheroidal body such as the Sun. This is also open
for  further research and  astrophysical
interpretations.

7. Effectsof the Oblateness of Sun and Planets
on Some Gravitational Phenomena

7.1 Gravitational scalar potential

In this subsection, an expression for the
gravitational scalar potential is obtained and &alu
along the equator and pole of the homogeneous
oblate spheroidal Sun and planets are computed.
The gravitational scalar potential exterior to a
homogeneous oblate spheroid [14] is given as

®(1,6) = BQo (=€) + B,Q,(=1)P,(7) (47)

Where, Q, and Q, are the Legendre functions

linearly independent to the Legendre polynomials
P, and P,, respectively.B, and B, are constants.

Using Eqn. 47, we obtained [3] approximate
expressions for the exterior gravitational scalar
potential along the equator and pole of
homogeneous oblate spheroids respectively as

(7,) =%(1+ %?)i+ 3213(7+ 1) 49)
and
m(,,,;):;os (1+3gz)i-1';§3(7+ 152)i (49)

These two equations were then used to compute
approximate values for the gravitational scalar
potential along the equator and the pole at various
points exterior to the oblate spheroidal bodies in
the solar system [3].

7.2 Gravitational timedilation

Here, we consider a clock at rest in this fieldhsuc
that dé =dnp=dep=0 and thus the world line
element for the gravitational field exterior to an

oblate spheroidal mass gives an expression for time
dilation in this gravitational field as;

199
dr:[1+0%f(/7,{)}2dt (50)

or
dt =[1+C%f (/;,{)Fdr (51)

Expanding the right-hand side of Eqn.51 gives

dt:[l—cizf(n,{)+..]dr (52)

From Eqn. 52, it can be conveniently deduced that
dt >dr (dilation). Thus, coordinate time of a
clock in this gravitational field is dilated rela# to
proper time [4].

As an illustration (Table 1), consider two events
at fixed points exterior to planet Earth along the
equator, separated in this gravitational field by
coordinate timedt and proper timedr .

Table 1: Coordinate time along the equator in the
gravitational field exterior to the Earth as a €act
of proper time [4].

Fixed point  Radial distance dt as
along the along the factor of
equator equator (km) dr

$o 6,378 1.306170
2¢, 12,723 1.122655
3¢, 19,075 1.076871
4¢, 25,430 1.055996
5§, 31,784 1.044042
6¢, 38,140 1.036296
7§, 44,495 1.030867
8¢, 50,851 1.026852
9¢, 57,207 1.023761
10§, 63,562 1.021308

Hence, one concludes that clocks run more slowly
at a smaller distance from the massive oblate
spheroidal body. In other words, clocks will run
slower at lower gravitational potentials (deeper
within a gravity well). This was first confirmed
experimentally in the laboratory by the Hafele-
Keating [15] experiment. Today, there are
numerous direct measurements of gravitational
time dilation using atomic clocks, while ongoing
validation is provided as a side-effect of the
operation of Global Positioning Systems [16].
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7.3 Gravitational spectral shift

Here, a beam of light moving from a source or
emitter (E) at a fixed point in the gravitationgld

of the oblate spheroidal body to an observer or
receiver (R) at a fixed point in the same
gravitational field is considered. Einstein's
equation of motion for a photon is used to derive a
expression for the shift in the frequency of a phot
moving in the gravitational field of an oblate
spheroidal mass as:

[h% fE(n,ajz(h% fR(n,ajz (53)
C C

Where, v, and v, are the frequencies of the

received and emitted photons, respectively. Also,
Ar, and Ar_. are the respective proper time

intervals between two light signals at receptiod an

emission points. The expressions on the right-hand
side of Eqgn. 53 are converging and can be
expanded binomially to the order of ¢c? in

approximate gravitational fields. This gives

1
= 5 (1 (0.6)- 1= (1.€))
(54)
It follows from Eqn. 54 that if the source is neare

to a body than the receiver, then
fo(7,&) < f.(n, &) and henceAv<O0.
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This indicates that there is a reduction in the
frequency of light when the source or emitter is
nearer the body than the receiver. The light id sai
to have undergone a red shift. Otherwise (source
further away from body than receiver), the light
undergoes a blue shift [5].

This gravitattional phenomena was
experimentally confirmed in the laboratory by the
Pound-Rebka experiment in 1959 (they used the
Mossbauer effect to measure the change in
frequency in gamma rays as they travelled from the
ground to the top of Jefferson Labs at Havard
University). The effect of a gravitational poteitia
difference on the apparent energy of the 14.4 keV
gamma ray of Fé was found by Pound and Rebka
[17] to agree within uncertainties, with Einstein’s
prediction based on his principle of equivalence.
Pound and Rebka in 1964 improved on their earlier
results confirming Einstein’s prediction to greater
precision. The resonance of the 14.4 keV?'Fe
gamma ray between Iron foils was still employed.
The same height as in the earlier experiment in the
Jefferson Physical Laboratory (22.5m) was also
used. This gravitational phenomenon was later
confirmed by astronomical observations.

Now, suppose the Pound-Rebka experiment
was performed at the surface of the Earth on the
equator, the shift in frequency obtained is:
z[2578x 10", This value is quite close to that

obtained by Pound and Rebkal 245 x 10™) in

1964. The closeness of the theoretically computed
value for the Pound-Rebka experiment is
remarkable indeed. The gravitational spectral shift
for the Pound-Rebka experiment is predicted for
other oblate spheroidal astrophysical bodies in the
solar system if it is to be performed along the
equator (Table 2).

Table 2: Predicted Pound-Rebka shift in frequecysbme astrophysical bodies in the Solar Systdm [5

Body Observation ¢ at f.(Nmkg™) Predicted shift
distance (km) point
Sun 700,022.5 241.527 -1.9373218 %'10-2.85889 x 16"
Mars 3418.5 9.231 -1.2317966 x'10 -9.24256 x 16°
Jupiter  71512.5 2.641 -1.4958977 ¥ 10-1.010111 x 18°
Saturn  60292.5 1.971 -4.8484869 X 10-1.902222 x 18
Uranus  25582.5 3.994 -2.1522082 % 10-4.647889 x 18"
Neptune 24782.5 4.304 -2.5196722 £ 10-5.168667 x 16°
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8. Conclusion applications of our extension abound as all
applications of Schwarzschild’s metric in studying
gravitational phenomena in the solar system can

now be studied using the metric tensor in an oblate

The practicability of the findings in this work &
encouraging factor. More so, the application of

these results is another factor in this age of

computational

[1]
[2]

[3]

[4]

[5]
[6]
[7]
[8]

precision. The astrophysical

spheroidal gravitational field.

Appendix: Field equationsin terms of the metric tensor and affine connections

0= _r<130,1+ r?nr 100_ rlor!_ 111_ r 205 121_ r 200,2+ r OJ_Z 2(

: (A1)

- I_(ljor fz -r %or 222_ r 10(!_ 313_ r 20!; 323_ER9 00

2
0= rfo,l_ rlllr 20_ r 21[ 020+ (r OOJ) +T 212,1_ r 211,2'" r l£ Zﬂ' r 2[2 213 r lEl 21_2 r 2[_112 (A2)
1
+ r33,1"' risr 331_ r 111_ 313_ r 21[ 323_ ERg 11
0= rfo,z - rl12r (io_ r 214_ O20"' r 01!)_ 002_ r 112,i" r 111,2_ r 21_2 12"1' r qul (A3)
1

+ rfs,z + risr 22_ r 11{ 313_ r 215 323_ERg 12

0= rc2)0,2 - rlzzr 20_ r 22{ 020+ r Ozg 002_ r 122,1"' r 112,2_ r l[z 11T r 252 12"i r 1';11 (A4)
1

+ rgs,z +r isr 332_ r 12; 313_ r Zzg 323_ ERg 22

0= _rgsr 20 -r 2; 020_ r 133,1_ r 13§ 111_ r 2313_. 12i" r 3£ 13 (A5)

1
- rgs,z - rlssr iz_ r 234_ 222+ r 335 233_ ERg
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