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In this article, present an application of General Relativity theory to the oblate spheroidal space time. A metric tensor for 
this gravitational field is constructed along with field equations and various solutions are suggested. Also, the motion of test 
particles and photons in this field are investigated. The gravitational field Lagrangian is constructed and then used to derive 
the expression for energy and angular momentum conservation. This expression for the conservation of angular momentum 
does not depend on gravitational potential. It is of the same form as in the Schwarzschild space time and Newton’s 
dynamical theory of gravitation. The effect of the oblate spheroidal nature of the Sun and planets on some gravitational 
phenomena is also investigated. The metric tensor is used to predict theoretical values for the Pound Rebka experiments if it 
were performed on other planets. The shift in frequency is obtained as 1510x578.2 −≅z for planet Earth. This value is quite 
close to that obtained by Pound and Rebka )10x45.2( 15−≅z . 
 
 

1.     Introduction 

Recently [1-5], we introduced an approach to 
obtain the metric tensor exterior to a static oblate 
spheroidal mass. Here, we present our major results 
and outline their physical significance. A covariant 
metric tensor having six non-zero components is 
constructed. This tensor is used to derive Einstein’s 
gravitational field equations interior and exterior to 
the oblate spheroid. Solutions are also constructed 
for these field equations. To authenticate the 
validity of this approach, gravitational phenomena 
such as gravitational time dilation, gravitational 
length contraction and gravitational spectral shift 
are studied in the gravitational field exterior to 
astrophysical bodies in the Solar System.Basically, 
emphasis is made on gravitational sources with 
time independent and axially-symmetric 
distributions of mass within oblate spheroids, 
characterized by two typical integrals of geodesic 
motion, namely, energy and angular momentum. 
From an astrophysical point of view, although such 
an assumption is not necessary, it could prove 
useful because of its equivalence to the assumption 
that the gravitational source is changing slowly in 
time so that partial time derivatives are negligible 
as compared to the spatial ones. It is stressed that 
the mass source considered is not the most arbitrary 
one from a theoretical point of view. On the other 
hand, many astrophysically interesting   systems   
are   usually assumed to be time independent (or 
static from another point of view) and axially 
symmetric continuous sources [6]. 
________________ 
*ebenechifu@yahoo.com 

2.     Metric Tensor Exterior to a Homogeneous 
Oblate Spheroid 

This section outlines the construction of the 
covariant metric tensor exterior to a homogeneous 
oblate spheroid.  

In order to obtain a metric tensor for this 
gravitational field, we let a spherically symmetric 
body (“Schwarzschild’s body”) to be transformed 
through deformation into an oblate spheroidal body 
in such a way that its density 0ρ  and total mass M 

remain the same and its surface parameter are 
given in oblate spheroidal coordinates [7] as 

 
;0ξξ =      constant                      (1) 

 
Then, we remark that the general relativistic field 
equations, exterior to an oblate spheroidal body, are 
mathematically equivalent to those of the spherical 
symmetric body. This is because, they are both 
tensorially the same. Hence, they are only related 
by the transformation from spherical to oblate 
spheroidal coordinates. Therefore, to get the 
corresponding invariant world line element in the 
exterior region of an oblate spheroidal mass, the 
function, )(rf , (an arbitrary function in the 

spherically symmetric field) is replaced by the 
corresponding function ),( ξηf  exterior to a 

homogeneous oblate spheroidal body. A sound and 
astrophysically satisfactory approximate expression 
for the function ),( ξηf  is obtained by equating it 

to the gravitational scalar potential exterior to the 
distribution of mass within oblate spheroidal 
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regions [8]. Next, coordinates are transformed from 
spherical to oblate spheroidal as  
 

( ), , , ( , , , )ct r c tθ φ η ξ φ→             (2) 

 
on the right-hand side of the line element. A 
simplification yields the following components of 
the metric tensor in the region exterior to a 
homogeneous oblate spheroid in oblate spheroidal 
coordinates [2] 
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3 3 (1 )(1 )g a ξ η= − + −                     (7) 

 
;0=µνg     otherwise                                  (8) 

 
This metric has been very instrumental in our 
development of general relativistic mechanics in 
gravitational fields exterior to homogeneous oblate 
spheroids. The covariant metric tensor obtained for 
gravitational fields exterior to oblate spheroidal 
masses has two additional non-zero components, 

12g  and 21g , which are not found in Schwarzschild 

field.  
Thus, the extension from Schwarzschild field to 

homogeneous oblate spheroidal gravitational fields 
has produced two additional non zero tensor 
components and thus this metric tensor field is 
unique. This confirms the assertion that oblate 
spheroidal gravitational fields are more complex 
than spherical fields and consequently general 
relativistic mechanics in this field is more involved. 

3.     Field Equations Exterior to an Oblate 
Spheroid 

Here, the metric tensor is used to derive 
gravitational field equations exterior to a 
homogeneous oblate spheroidal mass.  

After the construction of the covariant metric 
tensor, the following standard method is used to 

derive field equations exterior to a homogeneous 
oblate spheroid. To obtain the contravariant metric 
tensor for the gravitational field exterior to an 
oblate spheroid, µνg , we use the fact that µνg  is 

the cofactor of µνg  in g  divided by g  [9]. That is 

 

g

gin  g ofcofactor µνµν =g
                    

(9) 

 
Where, 
 

g = 

33323130

23222120

13121110

03020100

gggg

gggg

gggg

gggg

              (10) 

 
The coefficients of affine connection σµοΓ  for any 

gravitational field are defined in terms of the 
covariant and contravariant metric tensor of space- 
time as [9];  
 

( )νµλµνλλµν
σνσ

µν ,,,2

1
gggg −+=Γ            (11) 

 
Where, the comma denotes partial differentiation 
with respect to µλ,  and ν . We have constructed 

the known 64 coefficients of affine connection for 
this gravitational field [10]. The curvature tensor or 
the Riemann-Christoffel tensor δαβσR  for this field 

is defined in terms of the coefficients of affine 
connection [11] as  
 

, ,Rδ δ δ ε δ ε δ
αβσ ασ β αβ σ ασ εβ αβ εσ= Γ − Γ + Γ Γ − Γ Γ       

(12) 

 
Where, the comma denotes partial differentiation 
with respect to β and σ. We have also constructed 
the 256 components of this tensor for homogeneous 
oblate spheroidal gravitational fields. From the 
curvature tensor δ

αβσR  for this gravitational field, 

we have defined a second rank tensor αβR  (called 

the Ricci tensor) for the gravitational field exterior 
to the oblate spheroid [11] as 

δ
αβδαβ RR =                          (13) 

 
The 16 components of this tensor for the static 
homogeneous oblate spheroids have been 
constructed. From the Ricci tensor for our 
gravitational field, we deduced a scalar R defined 
by  
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R R g Rα α β
α α β= =                     (14) 

 
This is called the curvature scalar for homogeneous 
spheroidal fields. 

It is well known that for a region exterior to any 
astrophysical body, the general relativistic field 
equations are given tensorially as [12]  
 

0=µνG                              (15) 

 
Where, µνG  is the Einstein tensor and given 

explicitly as  
 

µνµνµν RgRG
2

1−=                 (16) 

 
Where, µνR  is the Ricci tensor, R  the curvature 

Scalar and µνg  is the covariant metric tensor for 

the field. The Einstein field equations for the 
gravitational field exterior to homogeneous oblate 
spheroids are then built up. The field equations 
obtained [10] can be written more explicitly in 
terms of the metric tensor and affine connections 
(see Appendix). The derived gravitational field 
equations are second order partial differential 
equations that can be solved and interpreted. All its 
mathematically possible solutions may then be 
distinguished by physical considerations, such as 
consistency with astrophysical or astronomical 
observations, the data and facts. Hence, in 
principle, our arbitrary function, ),( ξηf , which 

uniquely and completely determines the solution of 
Einstein’s gravitational metric tensor field exterior 
to the static homogeneous oblate spheroidal mass 
or pressure distributions can be found.  

4.     Solutions to Gravitational Field Equations 
Exterior to Oblate Spheroid 

In this section, solutions to the field equations 
exterior to homogeneous oblate spheroidal masses 
are constructed. 

By assuming that any two of the field equations 
possess a common simultaneous solution of the 
function, ),( ξηf , a number of mathematical 

contradictions arise. Therefore, it is concluded that 
in the space time exterior to a static homogeneous 
distribution of mass within a homogeneous oblate 
spheroidal region in the universe, no two field 
equations possess any common solution. 
Consequently, these field equations may only be 
solved separately and their different solutions 

applied whenever and wherever necessary and 
useful in physical theories.   
We outline the solution for the third field equation, 
which can be written in terms of the metric tensor 
and Ricci tensor as 
 

00 11 22 33 12
00 11 22 33 122 0g R g R g R g R g R− − − + − =        (17) 

 
Writing various terms of Eqn. 17 explicitly in terms 
of the metric tensor only, we obtain our explicit 
field equation. Now, we realize that our covariant 
metric tensor, Eqns. 3-8 can be written as  
 

( ) ( ) ( ), , ,g h fµ ν µ ν µ νη ξ η ξ η ξ= +       
(18) 

 
Where, ( ),hµν η ξ are the well-known pure empty 

space components and ),( ξηµνf  are the 

contributions due to the oblate spheroidal mass 
distribution. Consequently, as the mass distribution 
decays out, i.e., 0),( →ξηµνf , it leads to 

),(),( ξηξη µνµν hg → . That is, the metric tensor 

reduces to the pure empty space metric tensor as 
the distribution of mass decays out.  

Also,  
 

( ) ( ) ( ), , ,g h fµ ν µ ν µ νη ξ η ξ η ξ= +     (19) 

 
Where, ),( ξηµνh  are the well-known pure empty 

space components and ),( ξηµνf  are the 

contributions due to the oblate spheroidal mass 
distribution [10]. 

To begin the explicit formulation of the 33R  

field equation, first of all we note that all terms of 
the order of 0c  cancel out identically since the 
empty space time metric tensor µνh  independently 

satisfies the homogeneous 33R
 

field equation. 

Therefore, the lowest order term we expect in the 
exterior 33R  field equation is 2−c term. Hence, in 

order to formulate the exterior 33R  field equation 

of order, 2−c , we decompose our covariant metric 
tensor µνg  into pure empty space part hµν  (of 

order 0c  only) and the nonempty space part µνf  

of order 2−c  or higher). Similarly, let the contra-

variant metric tensor µνg  be decomposed into pure 

empty space part µνh (of order 0c  only) and the 

nonempty space part µνf  (of order 2−c  or 

higher). 
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Substituting explicit expressions for Eqns.18 
and 19 from [10] into Eqn. 17 and neglecting all 
terms of order 0c , the exterior 33R  field equation 

can be written as; 
 

+++ ξξηξηη ξηξηξη fKfKfK ),(),(),( 321  
 

0),(),(),( 654 =++ fKfKfK ξηξηξη ξη    (20)
 
 

Where, ),( ξηiK , 61K=i are functions of ),( ξη . 
In the exterior oblate spheroidal space time [8] 

 
0 01 1; tana n d co n s tξ ξ η ξ≥ − ≤ ≤ =     

(21) 
 

Let us now seek a solution for the 33R  field (Eqn. 

20) in the form of a power series as 
 

( )
0

, ( )n
n

f P ηη ξ ξ η
∞

+

=

= ∑             (22) 

 

Where, nP+  is a function to be determined for each 

value of n . 
Substituting the proposed function into the field 

equation and taking into consideration the fact that 

{ }∞

=0n
ηη  is a linearly independent set, we can equate 

the coefficients of 
ηη  on both sides of the obtained 

equation.  

From the coefficients of 
0η  of, we obtain the 

equation  
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   + + + + − − − − +   
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(23) 

 
This equation (Eqn. 23) is the first recurrence 
differential equation for unknown functions. All the 
other recurrence differential equations can follow 
from it yielding infinitely many recurrence 
differential equations. These can be used to 
determine all the unknown functions. 

The following points can thus be made. Firstly, 
Eqn. 23 determines +

2P  in terms of +
0P  and +

1P . 

Similarly, the other recurrence differential 
equations will determine the other unknown 
functions, K

+
3P , in terms of +

0P  and +
1P . 

Secondly, we note that we have the freedom to 
choose our arbitrary functions to satisfy the 
physical requirements or needs of any particular 
distribution or area of application. 

Let us now recall that for any gravitational field 
[13], 

00 2

2
1g

c
≅ + Φ                      (24) 

 
Where, Φ  is Newton’s gravitational scalar 
potential for the field under consideration. Thus we 
can then deduce that the unknown function in the 
field equation can be given approximately as 
 

( ) ( ), ,f η ξ η ξ+≅ Φ                     (25) 

Where, ),( ξη+Φ , is Newton’s gravitational scalar 

potential exterior to a homogeneous oblate 
spheroidal mass. Recently [14], it has been shown 
that 
 

( ) 0 0 0 2 2 2, ( ) ( ) ( ) ( )B Q i P B Q i Pη ξ ξ η ξ η+Φ = − + −   (26) 

 
Where, 0Q  and 2Q   are the Legendre functions 

linearly independent of Legendre polynomials 0P  

and 2P , respectively, and0B  and 2B  are constants. 

Let us now seek our analytical exterior solution 
(Eqn. 22) to be as close as possible to the 
approximate exterior solution (Eqn. 23). Now, 
since the approximate solution does not possesses 
any term in the first power of η , let us choose 

 

0 0 0 2 2( ) ( ) ( )P B Q i B Q iξ ξ ξ+ ≡ − + −        (27) 

 
and 
 

1 ( ) 0P ξ+ ≡                               (28) 

 
Hence, we can write )(2 ξ+P in terms of )(0 ξ+P  as; 
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We now remark that the first three terms of our 
series solution converge everywhere in the exterior 
space time. We also remark that our solution of the 
order 0c  may be written as  

 

0( , ) ( , ) ( , )f η ξ η ξ η ξ+ + += Φ + Φ       
(30) 

 
Where, ),( ξη+Φ  is the corresponding Newtonian 

gravitational scalar potential and ),(0 ξη+Φ  is the 

pure Einsteinian (general relativistic) or post 
Newtonian correction of the order 0c . 

Hence, we deduce that our exterior analytical 
solution is of the general form 

 

0 2
1

( , ) ( , ) ( , ) ( , )n
n

f η ξ η ξ η ξ η ξ
∞

+ + +

=

= Φ + Φ + Φ∑
 

(31) 
 

Interestingly, the single dependent function f  in our 
solution turns out to be the corresponding well 
known pure Newtonian exterior gravitational scalar 
potential augmented by hitherto unknown pure 
Einsteinian (or general relativistic or post-
Newtonian) gravitational scalar potential terms of 
orders K,,, 420 −− ccc . Hence, this solution reveals 
a hitherto unknown sense in which the exterior 
Einstein’s geometrical gravitational field equations 
are obtained as a generalization or completion of 
Newton’s dynamical gravitational field equations 
[10].  

5.     Motion of Particles of Non-zero Rest 
Masses 

In this section, we study the motion of particles of 
non-zero rest masses in homogeneous oblate 
spheroidal space time. 

The general relativistic equation of motion for 
test particles and the coefficients of affine 
connection for the gravitational field exterior to an 
oblate spheroidal mass are used to study the motion 
of particles of non-zero rest masses in this field [2]. 

 
The time equation of motion is obtained as 
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 (32) 

The solution of Eqn. 32 is given as 
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Eqn. 33 is the expression for the variation of the 
time on a clock moving in this gravitational field. It 
is of same form as that of Schwarzschild’s 
gravitational field.  

Similarly, the η  equation of motion is obtained 

as  
 

1 2 2 1 2 1 2 1 2 1
00 11 22 33 122 0c tη η ξ φ ηξ+ Γ + Γ + Γ + Γ + Γ =& & &&&& & &

(34) 
 

The ξ  equation of motion is given as;   

 
2 2 2 2 2 2 2 2 2 2
00 11 22 33 122 0c tξ η ξ φ ηξ+ Γ + Γ + Γ + Γ + Γ =&& & & && & &

  
(35) 

 
The azimuthal equation of motion is obtained as 
 

3 3
13 232 2 0φ η φ η φ+ Γ + Γ =&& & && &          (36) 

 
The solution of Eqn. 36 is given as 
 

 
( ) ( )2 21 1

lφ
η ξ

=
− +

&               (37) 

Where, l is a constant of motion. The constant, l 
physically corresponds to the angular momentum 
and hence Eqn. 37 is the law of conservation of 
angular momentum in this gravitational field. It 
does not depend on the gravitational potential and 
is of same form as that obtained for 
Schwarzschild’s and Newton’s dynamical theory of 
gravitation.  
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6.     Planetary Motion and Motion of Photons 

Here, the gravitational field Lagrangian is 
constructed and used to study the planetary motion 
and the motion of photons in the equatorial plane of 
homogeneous oblate spheroids. 

The Lagrangian in the equatorial plane of a 
homogeneous oblate spheroidal mass is obtained 
[2] as 

 
1
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2 2 2 2 2
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c c c
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(38) 

 
Using the Euler-Lagrange equations for a 
conservative system in which the potential energy 
is independent of the generalized velocities, it is 
shown that 
 

2

2
1 ( ) , 0f t k k

c
ξ + = = 

 
&&            (39) 

 
Where, k   is a constant. This is the law of 
conservation of energy in the equatorial plane of 
the gravitational field exterior to an oblate 
spheroidal mass [2].  

Also,  
 

( )21 , 0l lξ φ+ = =&&                     (40) 

 
Where, l is a constant. This is the law of 
conservation of angular momentum in the 
equatorial plane of the gravitational field exterior to 
an oblate spheroidal body.  

It is well known [12] that the Lagrangian,=∈L , 
with 1∈=  for time like orbits and 0∈=  for null 
orbits. Setting =∈L  in Eqn. 38, squaring both 
sides and substituting Eqns. 39 and 40 yields 
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In most applications of general relativity, the 

shape of orbits (that is as a function of the 
azimuthal angle) is of more interest than their time 
history. Hence, it is instructive to transform Eqn.41 
into an equation in terms of the azimuthal angle φ .  

Now, using the transformation; ( )ξ ξ φ=  an 

)(

1
)(

φξ
φ =u  an equivalent form of Eqn. 41 is 

obtained as 
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Differentiating Eqn. 42 yields 
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For time like orbits ( 1∈= ), Eqn. 43 reduces to 
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This is the newly derived planetary equation of 
motion in this gravitational field. It can be solved 
to obtain the perihelion precision of planetary 
orbits.  

Light rays travels on null geodesics ( 0∈= ). 
Thus Eqn. 43 becomes  
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In the limit of special relativity, some terms in 

Eqn. 45 vanish and the equation becomes  
 

( ) ( ) ( )
22

2 2
2

3 1 2 0
2

u ud u du
u u u u

d dφ φ
+

− + + − + =
 

       (46) 
 
Eqn. 45 is the photon equation of motion in the 
vicinity of a static massive homogeneous oblate 
spheroidal body. For the solution of special 
relativistic case, Eqn. 46 can be used to solve the 
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general relativistic equation (Eqn. 45). This can be 
done by taking the general solution of Eqn. 46 to be 
a perturbation of the solution of Eqn. 45. The 
immediate consequence of this analysis is that it 
will produce a new expression for the total 
deflection of light grazing a massive oblate 
spheroidal body such as the Sun. This is also open 
for further research and astrophysical 
interpretations. 

7.     Effects of the Oblateness of Sun and Planets 
on Some Gravitational Phenomena 

7.1     Gravitational scalar potential 

In this subsection, an expression for the 
gravitational scalar potential is obtained and values 
along the equator and pole of the homogeneous 
oblate spheroidal Sun and planets are computed. 

The gravitational scalar potential exterior to a 
homogeneous oblate spheroid [14] is given as 
 

0 0 2 2 2( , ) ( ) ( ) ( )B Q i B Q i Pη ξ ξ ξ ηΦ = − + −  (47) 

 
Where, 0Q  and 2Q  are the Legendre functions 

linearly independent to the Legendre polynomials 

0P  and 2P , respectively. 0B  and 2B  are constants.  

Using Eqn. 47, we obtained [3] approximate 
expressions for the exterior gravitational scalar 
potential along the equator and pole of 
homogeneous oblate spheroids respectively as 
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B B
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ξ ξ
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and 
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3 3
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B B
i iη ξ ξ ξ

ξ ξ
Φ ≈ + − +  (49) 

 
These two equations were then used to compute 
approximate values for the gravitational scalar 
potential along the equator and the pole at various 
points exterior to the oblate spheroidal bodies in 
the solar system [3]. 

7.2     Gravitational time dilation  

Here, we consider a clock at rest in this field such 
that 0=== φηξ ddd  and thus the world line 

element for the gravitational field exterior to an 
oblate spheroidal mass gives an expression for time 
dilation in this gravitational field as; 
 

( )
1

2

2

2
1 ,d f d t

c
τ η ξ = +  

              (50) 

 
or  

( )
1

2

2

2
1 ,dt f d

c
η ξ τ

−
 = +  

         (51) 

 
Expanding the right-hand side of Eqn.51 gives  
 

( )2

1
1 , ...d t f d

c
η ξ τ = − +  

      (52) 

 
From Eqn. 52, it can be conveniently deduced that 

τddt >  (dilation). Thus, coordinate time of a 
clock in this gravitational field is dilated relative to 
proper time [4]. 

As an illustration (Table 1), consider two events 
at fixed points exterior to planet Earth along the 
equator, separated in this gravitational field by 
coordinate time dt  and proper time τd .  
 
Table 1: Coordinate time along the equator in the 
gravitational field exterior to the Earth as a factor 
of proper time [4]. 
 
Fixed point  
along the  
equator 

Radial distance  
along the 
equator (km) 

 dt  as  
factor of  

τd  

0ξ  6,378  1.306170 

02ξ  12,723  1.122655 

03ξ  19,075  1.076871 

04ξ  25,430  1.055996 

05ξ  31,784  1.044042 

06ξ  38,140  1.036296 

07ξ  44,495  1.030867 

08ξ  50,851  1.026852 

09ξ  57,207  1.023761 

010ξ  63,562  1.021308 

 
Hence, one concludes that clocks run more slowly 
at a smaller distance from the massive oblate 
spheroidal body. In other words, clocks will run 
slower at lower gravitational potentials (deeper 
within a gravity well). This was first confirmed 
experimentally in the laboratory by the Hafele-
Keating [15] experiment. Today, there are 
numerous direct measurements of gravitational 
time dilation using atomic clocks, while ongoing 
validation is provided as a side-effect of the 
operation of Global Positioning Systems [16]. 
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7.3     Gravitational spectral shift  

Here, a beam of light moving from a source or 
emitter (E) at a fixed point in the gravitational field 
of the oblate spheroidal body to an observer or 
receiver (R) at a fixed point in the same 
gravitational field is considered. Einstein’s 
equation of motion for a photon is used to derive an 
expression for the shift in the frequency of a photon 
moving in the gravitational field of an oblate 
spheroidal mass as: 
 

=
∆
∆

=
R

E

E

R

v

v

τ
τ

 

 

2

1

2

2

1

2
),(

2
1),(

2
1

−








 +






 + ξηξη RE f
c

f
c

          (53) 

 
Where, Rv  and Ev  are the frequencies of the 

received and emitted photons, respectively. Also, 

Rτ∆  and Eτ∆  are the respective proper time 

intervals between two light signals at reception and 
emission points. The expressions on the right-hand 
side of Eqn. 53 are converging and can be 
expanded binomially to the order of 2−c  in 

approximate gravitational fields. This gives 
 

( ) ( )( )2

1
, ,R E

E R
E E

z f f
c

ν νν η ξ η ξ
ν ν

−∆≡ ≡ ≈ −

 (54) 
 

It follows from Eqn. 54 that if the source is nearer 
to a body than the receiver, then 

),(),( ξηξη RE ff <  and hence 0<∆v . 
 

This indicates that there is a reduction in the 
frequency of light when the source or emitter is 
nearer the body than the receiver. The light is said 
to have undergone a red shift. Otherwise (source 
further away from body than receiver), the light 
undergoes a blue shift [5].  

This gravitattional phenomena was 
experimentally confirmed in the laboratory by the 
Pound-Rebka experiment in 1959 (they used the 
Mossbauer effect to measure the change in 
frequency in gamma rays as they travelled from the 
ground to the top of Jefferson Labs at Havard 
University). The effect of a gravitational potential 
difference on the apparent energy of the 14.4 keV 
gamma ray of Fe57 was found by Pound and Rebka 
[17] to agree within uncertainties, with Einstein’s 
prediction based on his principle of equivalence. 
Pound and Rebka in 1964 improved on their earlier 
results confirming Einstein’s prediction to greater 
precision. The resonance of the 14.4 keV Fe57 
gamma ray between Iron foils was still employed. 
The same height as in the earlier experiment in the 
Jefferson Physical Laboratory (22.5m) was also 
used. This gravitational phenomenon was later 
confirmed by astronomical observations. 

Now, suppose the Pound-Rebka experiment 
was performed at the surface of the Earth on the 
equator, the shift in frequency obtained is: 

1510x578.2 −≅z . This value is quite close to that 

obtained by Pound and Rebka )10x45.2( 15−≅z  in 

1964. The closeness of the theoretically computed 
value for the Pound-Rebka experiment is 
remarkable indeed. The gravitational spectral shift 
for the Pound-Rebka experiment is predicted for 
other oblate spheroidal astrophysical bodies in the 
solar system if it is to be performed along the 
equator (Table 2).  

 

Table 2: Predicted Pound-Rebka shift in frequency for some astrophysical bodies in the Solar System [5]. 

Body Observation 
distance (km) 

ξ  at 

point 
Rf (Nmkg-1) Predicted shift 

Sun 700,022.5 241.527 -1.9373218 x 1011 -2.85889 x 10-21 

Mars 3418.5 9.231 -1.2317966 x 107 -9.24256 x 10-20 

Jupiter 71512.5 2.641 -1.4958977 x 109 -1.010111 x 10-20 

Saturn 60292.5 1.971 -4.8484869 x 108 -1.902222 x 10-21 

Uranus 25582.5 3.994 -2.1522082 x 108 -4.647889 x 10-20 

Neptune 24782.5 4.304 -2.5196722 x 108 -5.168667 x 10-20 
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8.     Conclusion 

The practicability of the findings in this work is an 
encouraging factor. More so, the application of 
these results is another factor in this age of 
computational precision. The astrophysical 

applications of our extension abound as all 
applications of Schwarzschild’s metric in studying 
gravitational phenomena in the solar system can 
now be studied using the metric tensor in an oblate 
spheroidal gravitational field. 

 
 

Appendix: Field equations in terms of the metric tensor and affine connections 
 

1 0 1 1 1 2 1 2 0 2
00 ,1 01 00 00 11 00 21 00 ,2 02 00

1 2 2 2 1 3 2 3
00 12 00 22 00 13 00 23 00

0

1

2
Rg

= −Γ + Γ Γ − Γ Γ − Γ Γ − Γ + Γ Γ

− Γ Γ − Γ Γ − Γ Γ − Γ Γ −
                                                                     (A1) 

 

( )20 1 0 2 0 0 2 2 1 2 2 2 1 2 2 2
1 0 ,1 11 1 0 1 1 2 0 0 1 12 ,1 1 1,2 12 1 1 1 2 12 1 1 1 2 1 1 2 2

3 3 3 1 3 2 3
1 3 ,1 13 3 1 1 1 1 3 1 1 2 3 1 1

0

1

2
R g

= Γ − Γ Γ − Γ Γ + Γ + Γ − Γ + Γ Γ + Γ Γ − Γ Γ − Γ Γ

+ Γ + Γ Γ − Γ Γ − Γ Γ −

          (A2) 

 
0 1 0 2 0 0 0 1 1 2 1 2 1
10 ,2 12 10 12 20 10 02 12 ,1 11,2 12 21 11 22

3 3 3 1 3 2 3
13,2 13 32 12 13 12 23 12

0

1

2
R g

= Γ − Γ Γ − Γ Γ + Γ Γ − Γ + Γ − Γ Γ + Γ Γ

+ Γ + Γ Γ − Γ Γ − Γ Γ −
                                          (A3) 

 
0 1 0 2 0 0 0 1 1 1 1 2 1 1 1
2 0 , 2 2 2 1 0 2 2 2 0 2 0 0 2 2 2 ,1 1 2 , 2 2 2 1 1 2 2 2 1 2 1 1 2

3 3 3 1 3 2 3
2 3 , 2 2 3 3 2 2 2 1 3 2 2 2 3 2 2

0

1

2
R g

= Γ − Γ Γ − Γ Γ + Γ Γ − Γ + Γ − Γ Γ − Γ Γ + Γ Γ

+ Γ + Γ Γ − Γ Γ − Γ Γ −
                      (A4) 

 
1 0 2 0 1 1 1 2 1 3 1
33 10 33 20 33,1 33 11 33 21 31 33

2 1 2 2 2 3 2
33 ,2 33 12 33 22 32 33 33

0

1

2
R g

= − Γ Γ − Γ Γ − Γ − Γ Γ − Γ Γ + Γ Γ

− Γ − Γ Γ − Γ Γ + Γ Γ −
                                                             (A5) 
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