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The vibrational energy levels of spheroidal carlotuster Go, G0, Cgoand G, are calculated considering the local
Hamiltonian of Morse potential usind(2) algebra. Here, each bond of the molecule itaced by a corresponding Lie
algebra and finally the Hamiltonian is constructeshsidering the interacting Casimir and Majoranarajoes. The
fundamental stretching modes of vibration of fudlees Gy, C;q, Cgpand G, are then calculated using this Hamiltonian to fit
the results of semi empirical PM3 molecular modelltechnique for g, Cgo density functional theory (DFTpr C;o and

semi empirical QCFF/PI program fogC

1. Introduction

The algebraic model [1,2] attracted a wider
scientific community in recent years for the
analysis and interpretation of experimental
rotational-vibrational spectra of small and medium-
sized molecules. The model is based on the idea of
dynamical symmetry, which is expressed through
the language of Lie algebras. Applying algebraic
techniques, we obtain an effective Hamiltonian
operator that conveniently describes the rotational
vibrational degrees of freedom of the physical
system. This frame work can account any specific
mechanism relevant for the correct characterization
of the molecular dynamics and spectroscopy. The
proposed algebraic models are formulated such that
they contain the same physical information for both
ab initio theories (based on the solution of the
Schrédinger equation) and semi empirical
approaches (making use of phenomenological
expansions in powers of appropriate quantum
numbers). It should be noted here that the algebrai
approaches to complex spectra have already been
proven useful in other fields of physics.

It has been proved that the algebraic models are
successful models in the study of the vibrational
spectra of small and medium-sized molecules.
Some small and large molecules can be studied by
using theU(4) andU(2) algebraic models. But, the
U(4) model becomes complicated when the number
of atoms in a molecule increases more than four.
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On the other hand, th€(2) model introduced by
Wulfman and Levine [3] is found to be successful

in explaining the stretching vibrations of
polyatomic molecules such as tetrahedral,
octahedral, Icosahedral, and  benzene-like

molecules. The brief review and the research work
done with the algebraic models up to the year 2000
and its outlook and perception in the first decafle
the 2F' century was presented by lachello and Oss
[4]. Recently, it is found that Lie algebraic metho
[5, 6] is extremely successful and accurate in
calculating the vibrational frequencies of
polyatomic molecules compare to the other
methods such as Dunham expansion and potential
approach method reported earlier [4]. So far no
extensive experimental study of the vibrational
spectra of g and G, is reported, but only the
guantum mechanical approach of PM3 (Parametric
Method 3) method for & and semi empirical
QCFF/PI program [13] for § have come forward

to analyze the vibrational spectra of fullerengs C
[7] and Gy [13] with its different energy bands.
However, there are sufficient experimental studies
of vibrational spectra of fullerenesdl7, 14], Go
[12]. By using the one-dimensiondl(2) algebraic
model, in this study we have calculated the
stretching vibrational energies of fullereneg, C;q,

Cgy and G, which is an excellent alternative
mathematical treatment for determination of energy
bands of fullerenes & Cyo, Cgo and G, and make
the comparison in spectroscopic point of view.
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2. TheAlgebraic Theory

It is necessary to begin with a brief review of the
theory of the algebraic model. Recently, the
algebraic method has been introduced as a
computational tool for the analysis and
interpretation of experimental rotational-vibratbn
spectra of large and medium-size molecules .This
method has been used extensively in chemical
physics and molecular physics. This method is
based on the idea of dynamic symmetry, which, in
turn, is expressed through the language of Lie
algebras. By applying Lie algebraic techniques, we
obtain an effective Hamiltonian operator that
conveniently describes the rotational-vibrational
degrees of freedom of the physical system T8le
algebraic methods are formulated in such a way
that they contain the same physical information of
bothab initio theories (based on the solution of the
Schrédinger equation) and of semi empirical
approaches (making use of phenomenological
expansions in powers of appropriate quantum
numbers). However, by employing the powerful
method of group theory, the results can be obtained
in a more rapid and straightforward way [B].Lie
algebraic approachedJ)(4) and U(2) algebraic
models have been extensively used. Thél)
model deals with the rotation and the vibration
simultaneously, but it becomes quite complicated
when the number of atoms in a molecule are more
than four. TheU(2) model has been particularly
successful in explaining stretching vibrations of
polyatomic molecules such as benzene-like and
Octahedral , Icosahedral molecules. Thus, here we
use the U(2) algebraic model to study the
vibrational energy level of fullereness§ Cro, Cgo

and G,.

To introduce thdJ(2) algebraic model, we use
the isomorphism of the Lie algebra 0f2) with
that of the one-dimensional Morse oscillator. The
eigenstates of the one-dimensional Schrddinger
equation, with a Morse potential

h(p.X) = p/2u+ Dl-expta x)f 1)

which can be put into one to one correspondence
with  the representations ofU (2) 0O(2),

characterized by quantum numbtiaNs m) with the

provision that one takes only the positive branth o
m,i.e.,m=N, N -2, ..., 1 or 0 forN = odd or even
(N = integer). The Morse Hamiltonian in Eqn.1
corresponds in theU(2) basis to a simple
Hamiltonian, h=C,+AC, where C is the

invariant operator .
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The eigenvalues df are
C =C,+A(m’ -N?), where

m=N,N-2,...1 or 0 (N =Intege) (2)

Introducing the vibrational quantum number,
v=(N-m)/2, Egn.2 can be rewritten as,

C =C, -4A(Nv-v?, where,v=01...N/2 or
N-1

— (whereN = even or odd (3)

The value ofC,, A andN are given in terms of
4, D and a , respectively, by using the following
relations

C, =-D,

0

-4AN=ha(2D/ u)"'?,
4A=-h*a?2u

One can verify that these are the eigenvalueseof th
Morse oscillator.

For a Icosahedral molecule likesdC Cro, Cso
and G4, we introducenU(2) Lie algebra to describe
n stretching bonds (C-C). The two possible chains
[10] of molecular dynamical groups in Icosahedral
molecule are

U,(2)0....0U, (200, (20 ...00, (200 (2
U,(2)0....0U, (20U (2)J0 (2)

which correspond to local and normal coupling,
respectively. The coupling to fin@(2) group in

the first chain is carried out through different
intermediate coupling®, (2) and the second chain

arises from all the possible couplings Wf(2)

groups to obtain a totdl(2) group, which in turn
contains the finalO(2) group. For these two
situations, the Hamiltonian operator can be
diagonalized analytically. The common algebraic
model Hamiltonian, in the case of stretching for
Icosahedral molecules, can be considered as [5]

H:EO’LZAQ’LZ::'%Q’Li/lM (4)

In Egn. 4, C, is an invariant operator with
eigenvalues4(v; -N,v,) and the operatoC, is
diagonal with matrix elements.
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<Ni1Vi;Nj!Vj |Cij |N'!Vi;Nj1Vj>=

4[(Vi +Vj)z _(Vi +Vj)(Ni + NJ)] (5)

<Ni’Vi;Ni'Vj|Mj NN YD
<Ni’Vi+1;Nj Vi _]le ||\|| ot ;N
Y

Eqgn. 6 is a generalization of the two-bond model to
n bonds [9], wheré take values from 1 ta for the
calculation of stretching vibrational energy level.
The simplest basis to diagonalize the Hamiltonian
is characterized by the representation of localenod
chain, where below each group we have used
guantum numbers characterizing the eigenvalues of
the corresponding invariant operatoll is the
number of bosons related to stretching physical
modes. The quantum numbefscorrespond to the
number of quanta in each oscillator, whilés the
total vibrational quantum number given by

V=23V, ()

For a particular polyad, the total vibrational
quantum number is always conserved. The
inclusion of M; in the local Hamiltonian operator
cannot affect theonservation rule. In Egn. & is

an invariant operator of uncoupled bond with
eigenvalues4(v*-Nyv;) and the operatolC; for
coupled bonds are diagonal with matrix elements.

3.  Result and Discussion

In this work, we use four algebraic parameters
i.e.,A A, A A", and the vibron numbeX to study
the vibrational spectra of theg§> Cro, Cgo and Gy
molecules.

The value of N (vibron number) can be
determined by the relation

N = C()e -1 (8)
@X,
Where, w, and w,x, are the spectroscopic

constants [11] of stretching interaction of the

molecules considered. This numerical value must
be seen as initial guess; depending on the specific
molecular structure, one can expect changes in such
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While, the operatoM ; has both diagonal and non-
diagonal matrix element

(6)

an estimate, however, which should not be larger
than +20% of the original value Egn.8. It may be
noted that during the calculation of the vibrationa
frequencies of fullerenesgg, Cro, Cgo and Gy, the
value of N is kept fixed and not used as free
parameter.

To obtain a starting guess for the paraméter
we use the expression for the single-oscillator
fundamental mode, which is given as

E(v=1)=-4A(N-1) )
Using Egn. 9,A can be obtained as
A=_E (10)

4(1-N)

To obtain an initial guess for the parametér,
whose role is to split the initially degeneratedbc
modes, we consider the following relations:

P = (11)
2N
and
y=/EEl (12)
6N

To have better results, a numerical fitting progedu
(in a least-square sense) is required to obtain the
parameters,A, A, A, and A', starting from the
values as given by Eqns. 10-12. Initial guessAbr
may be taken as zero.

The fitting parameteralong with the simulated
and calculated energies of fullereneg, ©;q, Cgo,
and G, are given in Tables 1-8.
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Table 1: Fitting parametersf fullerene G,

Vibron number Stretching parameters

N A A A
140 -1.468 0.3285 -0.0404

* . _ . . .
A" all are in crit whereasN is dimensionless

Table 2: Simulated and calculated energies*jcof fullerene G,

Percentage of
I Il deviation
Normal level Ref.[7] This Study A(I=11) A|| -1 |
—x100%
v, 816.34 816.84 -0.50 0.061%
v, 850.21 850.77 -0.56 0.065%
A 908.84 908.83 0.01 0.001%
v, 912.56 913.24 -0.68 0.074%
A 940.96 941.76 -0.80 0.085%
A 1124.37 1121.30 3.07 0.273%
v, 1245.80 1247.22 -1.42 0.113%
A 1290.04 1285.58 4.46 0.345%
v, 1337.55 1334.78 2.77 0.207%
A(rms) = 2.125cm*
Table 3: Fitting parametersf fullerene G,
Vibron number Stretching parameters
N A A A'
140 -0.570 0.875 -0.167

* . _ . . .
A" all are in crit whereasN is dimensionless
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Table 4: Simulated and calculated energies™joni fullerene G,

Percentage of
I Il deviation
Normal level Ref.[12] This Study A(Cl=11) All =11
MxlOOO/O
A 318.00 317.10 0.90 0.283%
v, 458.80 457.38 1.42 0.309%
v, 563.90 562.10 1.80 0.319%
v, 703.80 700.32 3.48 0.494%
A 895.80 907.90 -12.10 1.350%
v, 1142.90 1156.82 -13.92 1.217%
v, 1205.60 1190.42 15.18 1.259%
v, 1320.80 1331.6 -10.80 0.817%
A 1462.40 1469.02 -6.62 0.452%
A(rms) =9.124cm*
Table 5: Fitting parametersf fullerene G
Vibron number Stretching parameters
N A A A'
140 -2.197 0.3428 -0.0808

A, A" all are in crit whereasN is dimensionless

Table 6: Simulated and calculated energies™joni fullerene G,

Percentage of
I Il deviation

Normal level Ref.[7] This Study A(L=11) A|| I— Il | <100%
A 1222.54 1222.00 0.54 0.044%
v, 1294.61 1289.87 4.74 0.366%
v, 1319.49 1317.98 151 0.114%
v, 1352.29 1346.09 6.20 0.458%
A 1382.42 1374.20 8.22 0.594%
v, 1421.10 1430.42 -9.32 0.655%
v, 1457.36 1458.53 -1.17 0.080%
v, 1494.73 1486.64 8.09 0.541%
V, 1516.96 1514.75 2.21 0.145%

A(rms) =5.672cm*
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Table 7: Fitting parametersf fullerene G,

Vibron number

Stretching parameters

N A

A A

140 -0.624

0.678 -0.159

A" all are in crit whereasN is dimensionless

Table 8: Simulated and calculated energies*jcof fullerene G,

Percentage of
I Il deviation
Normal level Ref.[13] This Study A(I=11) A|| -1 |
——x100%
v, 346 347.00 -1.00 0.289%
v, 480 480.56 -0.56 0.116%
A 536 536.84 -0.84 0.156%
v, 722 719.96 2.04 0.282%
A 826 818.24 7.76 0.939%
Vv, 896 888.80 7.20 0.803%
v, 1060 1064.36 -4.36 0.411%
A 1328 1331.48 -3.48 0.262%
A 1445 1444.04 0.96 0.066%

A(rms) = 4.086¢m™

4, Conclusion

The algebraic model presented here is a model of
coupled one dimensional Morse oscillators
describing the C-C stretching vibrations of the
molecule Gy, Gy, Cgo, and G4 By making use of
this algebraic model, one can avoid the complicated
integrations in the solution of coupled differehtia
Schrddinger equations. For the C-C stretching
inter-bond interactions, this model can be used in
simple and straightforvard way and reliable
calculation of the stretching bonds can be exptiine
in terms of the above fitting parameters. In this
paper, we presented only a few modes of vibrations
of Cso, Cro, Cgo, and G4 which are in good
agreement with the results of computer simulated
semi empirical PM3 molecular modelling
technique [7], DFT [12] and QCFF/PI program
[13].

It is hoped that with further advancement of
U(2) model, the higher order modes of vibrations

of Ceo, Gro, Cso, @nd G4 also can be explained with
good accuracy considering the bent vibrations of
the molecules along with the stretch vibrations.
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