
The African Review of Physics (2011) 6:0011                                                                                                                        95 

 

A Comparative Study of Vibrational Spectra of Fullerene C60, C70, C80  

and C84 using U(2) Lie Algebra  
 
 
 

Rupam Sena*, Ashim Kalyana, Raghunandan Dasb,  Joydeep Choudhuryc,  
Nirmal Kumar Sarkard and Ramendu Bhattacharjeec

 
aDepartment of Physics, Srikishan Sarda College, Hailakandi, Assam, India 

bDepartment of Physics, Govt. Degree College, Dharmanagar, India 
cDepartment of Physics, Assam University, Silchar, India 

dDepartment of Physics, Karimganj College, Karimganj, India 
 
 

The vibrational energy levels of spheroidal carbon cluster C60, C70, C80 and C84 are calculated considering the local 
Hamiltonian of Morse potential using U(2) algebra. Here, each bond of the molecule is replaced by a corresponding Lie 
algebra and finally the Hamiltonian is constructed considering the interacting Casimir and Majorana operators. The 
fundamental stretching modes of vibration of fullerenes C60, C70, C80 and C84 are then calculated using this Hamiltonian to fit 
the results of semi empirical PM3 molecular modelling technique for C60, C80, density functional theory (DFT) for C70 and 
semi empirical QCFF/PI program for C84.  

 
 

 
1.     Introduction 

The algebraic model [1,2] attracted a wider 
scientific community in recent years for the 
analysis and interpretation of experimental 
rotational-vibrational spectra of small and medium-
sized molecules. The model is based on the idea of 
dynamical symmetry, which is expressed through 
the language of Lie algebras. Applying algebraic 
techniques, we obtain an effective Hamiltonian 
operator that conveniently describes the rotational-
vibrational degrees of freedom of the physical 
system. This frame work can account any specific 
mechanism relevant for the correct characterization 
of the molecular dynamics and spectroscopy. The 
proposed algebraic models are formulated such that 
they contain the same physical information for both 
ab initio theories (based on the solution of the 
Schrödinger equation) and semi empirical 
approaches (making use of phenomenological 
expansions in powers of appropriate quantum 
numbers). It should be noted here that the algebraic 
approaches to complex spectra have already been 
proven useful in other fields of physics. 

It has been proved that the algebraic models are 
successful models in the study of the vibrational 
spectra of small and medium-sized molecules. 
Some small and large molecules can be studied by 
using the U(4) and U(2) algebraic models. But, the 
U(4) model becomes complicated when the number 
of atoms in a  molecule  increases more than four.  
________________ 
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On the other hand, the U(2) model introduced by 
Wulfman and  Levine [3] is found to be successful 
in explaining the stretching vibrations of 
polyatomic molecules such as tetrahedral, 
octahedral, Icosahedral, and benzene-like 
molecules. The brief review and the research work 
done with the algebraic models up to the year 2000 
and its outlook and perception in the first decade of 
the 21st century was presented by Iachello and Oss 
[4]. Recently, it is found that Lie algebraic method 
[5, 6] is extremely successful and accurate in 
calculating the vibrational frequencies of 
polyatomic molecules compare to the other 
methods such as Dunham expansion and potential 
approach method reported earlier [4]. So far no 
extensive experimental study of the vibrational 
spectra of C80 and C84 is reported, but only the 
quantum mechanical approach of PM3 (Parametric 
Method 3) method for C80 and semi empirical 
QCFF/PI program [13] for C84 have come forward 
to analyze the vibrational spectra of fullerenes C80 
[7] and C84 [13] with its different energy bands. 
However, there are sufficient experimental studies 
of vibrational spectra of fullerenes C60 [7, 14], C70 
[12]. By using the one-dimensional U(2) algebraic 
model, in this study we have calculated the 
stretching vibrational energies of fullerenes C60, C70, 
C80 and C84, which is an excellent alternative 
mathematical treatment for determination of energy 
bands of fullerenes C60, C70, C80 and C84 and make 
the comparison in spectroscopic point of view. 
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2.     The Algebraic Theory 

It is necessary to begin with a brief review of the 
theory of the algebraic model. Recently, the 
algebraic method has been introduced as a 
computational tool for the analysis and 
interpretation of experimental rotational-vibrational 
spectra of large and medium-size molecules .This 
method has been used extensively in chemical 
physics and molecular physics. This method is 
based on the idea of dynamic symmetry, which, in 
turn, is expressed through the language of Lie 
algebras. By applying Lie algebraic techniques, we 
obtain an effective Hamiltonian operator that 
conveniently describes the rotational-vibrational 
degrees of freedom of the physical system [8]. The 
algebraic methods are formulated in such a way 
that they contain the same physical information of 
both ab initio theories (based on the solution of the 
Schrödinger equation) and of semi empirical 
approaches (making use of phenomenological 
expansions in powers of appropriate quantum 
numbers). However, by employing the powerful 
method of group theory, the results can be obtained 
in a more rapid and straightforward way [9]. In Lie 
algebraic approaches, U(4) and U(2) algebraic 
models have been extensively used. The U(4) 
model deals with the rotation and the vibration 
simultaneously, but it becomes quite complicated 
when the number of atoms in a molecule are more 
than four. The U(2) model has been particularly 
successful in explaining stretching vibrations of 
polyatomic molecules such as benzene-like and 
Octahedral , Icosahedral molecules. Thus, here we 
use the U(2) algebraic model to study the 
vibrational energy level of fullerenes C60, C70, C80 
and C84 . 

To introduce the U(2) algebraic model, we use 
the isomorphism of the Lie algebra of U(2) with 
that of the one-dimensional Morse oscillator. The 
eigenstates of the one-dimensional Schrödinger 
equation, with a Morse potential 
 

2
2( . ) / 2 [1 exp( )]h p x p D xµ α= + − −            (1) 

 
which can be put into one to one correspondence 
with the representations of ),2()2( OU ⊃  

characterized by quantum numbers 〉mN,  with the 

provision that one takes only the positive branch of 
m, i.e., m = N, N - 2, K , 1 or 0 for N = odd or even 
(N = integer). The Morse Hamiltonian in Eqn.1 
corresponds in the U(2) basis to a simple 

Hamiltonian, ,0 ACCh +=  where C is the 

invariant operator . 

The eigenvalues of h are  

)( 22
0 NmACC −+= ,  where  

 
1,2, K−= NNm  or 0  )Integer( =N        (2) 

 
Introducing the vibrational quantum number,  

2/)( mNv −= ,  Eqn.2 can be rewritten as, 

 
2

0 (4 vNvACC −−= , where, 2/,1,0 Nv K=  or 

2

1−N
 (where N = even or odd)                            (3) 

 
The value of 0C , A and N are given in terms of 

D,µ  and α , respectively, by  using the following 

relations 
 

,0 DC −=      ,)/2(4 2/1µα DhAN =−   

           µα 2/4 22hA −=  

 
One can verify that these are the eigenvalues of the 
Morse oscillator. 

For a Icosahedral molecule like C60, C70, C80 
and C84, we introduce nU(2) Lie algebra to describe 
n stretching bonds (C-C). The two possible chains 
[10] of molecular dynamical groups in Icosahedral 
molecule are  
 

1 1

1

(2) ..... (2) (2) ..... (2) (2)

(2) ..... (2) (2) (2)
n n

n

U U O O O

U U U O

⊗ ⊗ ⊃ ⊗ ⊗ ⊃
⊗ ⊗ ⊃ ⊃

 

 
which correspond to local and normal coupling, 
respectively. The coupling to final O(2) group in 
the first chain is carried out through different 
intermediate couplings )2(ijO  and the second chain 

arises from all the possible couplings of )2(iU  

groups to obtain a total U(2) group, which in turn 
contains the final O(2) group. For these two 
situations, the Hamiltonian operator can be 
diagonalized analytically. The common algebraic 
model Hamiltonian, in the case of stretching for 
Icosahedral molecules, can be considered as [5] 
 

0
1

n n n

i i ij ij ij ij
i i j i j

H E AC A C Mλ
= 〈 〈

= + + +∑ ∑ ∑        (4) 

 
In Eqn. 4, iC is an invariant operator with 

eigenvalues )(4 1

2

ii vNv −  and the operator ijC  is 

diagonal with matrix elements. 
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While, the operator ijM  has both diagonal and non-

diagonal matrix element 
 

 

1/ 2

1/ 2

, ; , , ; , 2 )

, 1; , 1 , ; , [ ( 1)( )( 1)]

, 1; 1 , ; , [ ( 1)( )( 1)]

i i j j ij i i j j i j j i i j

i i j j ij i i j j j i i i j j

i i j ij i i j j i j j i i

N N M N N N N

N N M N N N N

N N M N N Nj N

ν ν ν ν ν ν ν ν

ν ν ν ν ν ν ν ν

ν ν ν ν ν ν ν

〈 〉 = 〈 + −

〈 + − 〉 = − + − − +

〈 − + 〉 = − + − − +

                   (6) 

 
Eqn. 6 is a generalization of the two-bond model to 
n bonds [9], where i take values from 1 to n for the 
calculation of stretching vibrational energy level. 
The simplest basis to diagonalize the Hamiltonian 
is characterized by the representation of local mode 
chain, where below each group we have used 
quantum numbers characterizing the eigenvalues of 
the corresponding invariant operator. N is the 
number of bosons related to stretching physical 
modes. The quantum numbers vi correspond to the 
number of quanta in each oscillator, while V is the 
total vibrational quantum number given by 
 

V = ∑
−

n

i
iv

1
                              (7) 

 
For a particular polyad, the total vibrational 
quantum number is always conserved. The 
inclusion of Mij in the local Hamiltonian operator 
cannot affect the conservation rule. In Eqn. 5, Ci is 
an invariant operator of uncoupled bond with 
eigenvalues 4(vi

2-Nivi) and the operator Cij for 
coupled bonds are diagonal with matrix elements. 

3.      Result and Discussion 

In this work, we use four algebraic parameters 
i.e., ',,', λλAA , and the vibron number N to study 
the vibrational spectra of the C60, C70, C80 and C84 
molecules. 

The value of N (vibron number) can be 
determined by the relation 

 

1e

e e

N
x

ω
ω

= −                            (8) 

 
Where, eω and ee xω  are the spectroscopic 

constants [11] of stretching interaction of the 
molecules considered. This numerical value must 
be seen as initial guess; depending on the specific 
molecular structure, one can expect changes in such 

an estimate, however, which should not be larger 
than ±20% of the original value Eqn.8. It may be 
noted that during the calculation of the vibrational 
frequencies of fullerenes C60, C70, C80 and C84, the 
value of N is kept fixed and not used as free 
parameter. 

To obtain a starting guess for the parameter A, 
we use the expression for the single-oscillator 
fundamental mode, which is given as 
 

( 1) 4 ( 1)E A Nν = = − −                       (9) 

 

Using Eqn. 9, A  can be obtained as 
 

4(1 )

E
A

N
=

−
                           (10) 

 
To obtain an initial guess for the parameter, λ , 
whose role is to split the initially degenerate local 
modes,  we consider the following relations:  
 

1 2

2

E E

N
λ

−
=                            (11) 

 
and  
 

1 2

6

E E

N
λ

−
′ =                            (12) 

 
To have better results, a numerical fitting procedure 
(in a least-square sense) is required to obtain the 
parameters, λ,', AA , and 'λ , starting from the 
values as given by Eqns. 10-12. Initial guess for 'A  
may be taken as zero. 

The fitting parameters along with the simulated 
and calculated energies of fullerenes C60, C70, C80, 
and C84 are given in Tables 1-8. 
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Table 1: Fitting parameters* of fullerene C60 

 
 

Vibron number 
 

Stretching parameters 
 

N A λ  'λ  

140 -1.468 0.3285 -0.0404 
* ',, λλA  all are in cm-1 whereas N  is dimensionless 

 
 
 

Table 2: Simulated and calculated energies (cm-1) of fullerene C60 
 

 
 

Normal level 

 
I 

Ref.[7] 

 
II 

This Study 

 
 

∆ ( I – II ) 

Percentage of 
deviation 

100%
I II

I

∆ −
×  

1v  816.34 816.84 -0.50 0.061% 

2v  850.21 850.77 -0.56 0.065% 

3v  908.84 908.83 0.01 0.001% 

4v  912.56 913.24 -0.68 0.074% 

5v  940.96 941.76 -0.80 0.085% 

6v  1124.37 1121.30 3.07 0.273% 

7v  1245.80 1247.22 -1.42 0.113% 

8v  1290.04 1285.58 4.46 0.345% 

9v  1337.55 1334.78 2.77 0.207% 

125.2)( =∆ rms cm-1 
 
 
 

Table 3: Fitting parameters* of fullerene C70 
 

 
Vibron number 

 
Stretching parameters 

 
N A λ  'λ  

140 -0.570 0.875 -0.167 
* ',, λλA  all are in cm-1 whereas N  is dimensionless 
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Table 4: Simulated and calculated energies (cm-1) of fullerene C70 
 

 
 

Normal level 

 
I 

Ref.[12] 

 
II 

This Study 

 
 

∆ ( I – II ) 

Percentage of 
deviation 

100%
I II

I

∆ −
×  

1v  318.00 317.10 0.90 0.283% 

2v  458.80 457.38 1.42 0.309% 

3v  563.90 562.10 1.80 0.319% 

4v  703.80 700.32 3.48 0.494% 

5v  895.80 907.90 -12.10 1.350% 

6v  1142.90 1156.82 -13.92 1.217% 

7v  1205.60 1190.42 15.18 1.259% 

8v  1320.80 1331.6 -10.80 0.817% 

9v  1462.40 1469.02 -6.62 0.452% 

124.9)( =∆ rms cm-1 

 
 
 

Table 5: Fitting parameters* of fullerene C80  
 

 
Vibron number 

 
Stretching parameters 

 
N A λ  'λ  

140 -2.197 0.3428 -0.0808 
* ',, λλA  all are in cm-1 whereas N  is dimensionless 

 
 
 

Table 6: Simulated and calculated energies (cm-1) of fullerene C80  
 

 
 

Normal level 

 
I 

Ref.[7] 

 
II 

This Study 

 
 

∆ ( I – II ) 

Percentage of 
deviation 

100%
I II

I

∆ −
×  

1v  1222.54 1222.00 0.54 0.044% 

2v  1294.61 1289.87 4.74 0.366% 

3v  1319.49 1317.98 1.51 0.114% 

4v  1352.29 1346.09 6.20 0.458% 

5v  1382.42 1374.20 8.22 0.594% 

6v  1421.10 1430.42 - 9.32 0.655% 

7v  1457.36 1458.53 - 1.17 0.080% 

8v  1494.73 1486.64 8.09 0.541% 

9v  1516.96 1514.75 2.21 0.145% 

672.5)( =∆ rms cm-1 
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Table 7: Fitting parameters* of fullerene C84  

 
 

Vibron number 
 

Stretching parameters 

N A λ  'λ  

140 -0.624 0.678 -0.159 
* ',, λλA  all are in cm-1 whereas N  is dimensionless 

 
 
 

Table 8: Simulated and calculated energies (cm-1) of fullerene C84 
 

 
 

Normal level 

 
I 

Ref.[13] 

 
II 

This Study 

 
 

∆ ( I – II ) 

Percentage of 
deviation 

100%
I II

I

∆ −
×  

1v  346 347.00 -1.00 0.289% 

2v  480 480.56 -0.56 0.116% 

3v  536 536.84 -0.84 0.156% 

4v  722 719.96 2.04 0.282% 

5v  826 818.24 7.76 0.939% 

6v  896 888.80 7.20 0.803% 

7v  1060 1064.36 -4.36 0.411% 

8v  1328 1331.48 -3.48 0.262% 

9v  1445 1444.04 0.96 0.066% 

086.4)( =∆ rms cm-1 

 
 

4.     Conclusion 

The algebraic model presented here is a model of 
coupled one dimensional Morse oscillators 
describing the C-C stretching vibrations of the 
molecule C60, C70, C80, and C84. By making use of 
this algebraic model, one can avoid the complicated 
integrations in the solution of coupled differential 
Schrödinger equations. For the C-C stretching 
inter-bond interactions, this model can be used in a 
simple and straightforward way and reliable 
calculation of the stretching bonds can be explained 
in terms of the above fitting parameters. In this 
paper, we presented only a few modes of vibrations 
of C60, C70, C80, and C84, which are in good 
agreement with the results of computer simulated 
semi empirical PM3 molecular modelling 
technique [7], DFT [12] and QCFF/PI program 
[13]. 

It is hoped that with further advancement of  
U(2) model, the higher order modes of vibrations 

of C60, C70, C80, and C84 also can be explained with 
good accuracy considering the bent vibrations of 
the molecules along with the stretch vibrations.  
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