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Isothermal gas flow is simulated in micro-Couette, micro-channel and micro porous media using the lattice Boltzmann 
model (LBM). To consider compressibility and rarefaction effects, two relaxation time models related to Knudsen number Kn 
and local density are used. Diffuse-scattering boundary condition (DSBC) and a combination of bounce back and specular 
boundary conditions are used to obtain slip velocity at the wall. For micro-Couette flow, the slip velocity and the slip length 
as a function of Kn are calculated and compared with that of MD, DSMC and Maxwell theorem. For micro-Couette, the 
velocity profile along with the slip velocity for different values of Kn and the slip length as a function of Knudson number are 
studied. It is shown that the flow structures are changed by changing the values of Kn. The nonlinear pressure drop and the 
velocity distribution along the streamwise direction in the micro-channel flow are obtained and compared with available data, 
which resulted in good agreement. The Knudsen minimum phenomenon is successfully predicted within the LBM 
framework. Finally, gas flow characteristics in micro porous media for different Kn numbers, porosity and inlet to outlet 
pressure ratio are studied. The effects of compressibility and rarefaction are considered.  

 

1.     Introduction 

Micro-electronic-mechanical-systems (MEMS) are a 
rapidly emerging technology in which micron-scaled 
devices are constructed using microelectronic 
fabrication techniques. Many different devices are 
under development, ranging from channels for 
integrated cooling of electronic circuits, flow 
sensors, and valves for gas pressure regulation, to 
complex systems consisting of channels, pumps, 
valves, sensors and other components, all integrated 
on a single module or as sandwiched modules [1]. In 
order to design such devices effectively, it is 
necessary to understand and employ the physical 
laws governing the flow in small conduits. Because 
of obvious difficulties associated with testing and 
validating these devices experimentally, numerical 
analysis is an alternative for investigating the flow 
inside micro-channels and other more complex 
geometries [2]. 

The Knudsen number Kn, which is defined 
as HKn /λ= and compares the mean free path λ  to 
the smallest flow characteristic length H, provides a 
direct means of validating the continuum approach. 
Fig. 1 describes different regimes of fluid flow 
depending on the Knudsen number. For ,10>Kn  the 
system can be considered to be a free molecular 
flow. A flow is considered a continuum for 

0.001<Kn .       The  intermediate  values of Kn,  for    
____________________ 
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100.1 <Kn< , are associated with a transition flow 
regime, while those within the range of 

0.10.001 <Kn< represent a slip flow regime. The 
Navier–Stokes equations may be applied to flows 
within the slip regime or marginally transitional if 
the first-order or higher-order velocity slip boundary 
conditions are employed at the wall. For flows in the 
high transition or free molecular regimes, it requires 
either a direct solution of the full Boltzmann 
equation, or particle-based methods such as 
molecular dynamics (MD) [3] or a gas dynamic 
model such as the direct simulation Monte Carlo 
(DSMC) [4].  

In the last decade or so, the lattice Boltzmann 
model (LBM) which is also called lattice Boltzmann 
equation or Boltzmann cellular automata in the 
literature, has emerged as a new and effective 
numerical approach of computational fluid dynamics 
and achieved considerable success in simulating fluid 
flows and associated transport phenomena. The 
lattice Boltzmann model is based on microscopic 
models and mesoscopic kinetic equations. The LBM 
constructs simplified kinetic models that incorporate 
the essential physics of microscopic or mesoscopic 
processes so that the macroscopic averaged 
properties obey the desired macroscopic equations. 
In the LBM, a simplified version of the kinetic 
equation is used rather than solving complicated 
kinetic equations such as the full Boltzmann 
equation. It has the advantage of implementation of 
fully parallel algorithms.
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FIG. 1. Knudsen number regimes. 

 
The LBM simulates fluid flows by tracking the 

evolution of single-particle distribution, and 
computationally it is a stable, accurate and efficient 
method. The LBM originated from lattice gas (LG) 
automata. It can also be viewed as a special finite 
difference scheme for the kinetic equation of the 
discrete-velocity distribution function. The LBM 
encompasses a lattice, an equilibrium distribution 
and a kinetic equation called, the lattice Boltzmann 
equation (LBE). The LBM was first introduced by 
McNamara and Zanetti [5] and it requires much less 
computational effort than the MD and DSMC. In 
fact, unlike MD and DSMC methods, the number of 
particles distributed in the computational field in the 
LBM is not related to the number of molecules and it 
is many orders of magnitude less. A simple 
linearized version of the collision operator, which 

makes use of a relaxation timeτ  towards the local 
equilibrium using a single time relaxation, is the 
Bhatnagar-Gross-Krook (BGK) collision operator 
(Bhatnagar et al. [6]) and has been independently 
suggested by several authors (Qian [7], Chen et al. 
[8]). The LBM can be used to simulate flows with a 
wide range of Knudsen numbers and especially for 
flows with high Kn, where the flow regimes are slip 
and transition flows. The method is particularly 
useful in applications involving interfacial dynamics, 
multiphase and multi-component fluid flows and 
flows with complex geometries such as flow in 
porous media [9-11]. The method is also used to 
simulate turbulent flows (Martinez et al. [12] and 
flows with moderate heat transfer [13-20].  

The LBM has three important and distinct 
features compared to the other numerical methods: 
The convection operator (or streaming process) of 
the LBM in phase space (or velocity space) is linear, 
the incompressible Navier-Stokes (NS) equations can  
be obtained  in  the nearly incompressible limit of the 

 
LBM and the LBM utilizes a minimal set of 
velocities in phase space.  

To obtain no-slip velocity conditions at the wall, 
one of the simplest ways is to use the first order 
method called the bounce-back scheme (Wolfram 
[21], Lavallee et al. [22]). By using this scheme, 
when a particle distribution streams to a wall node, 
the particle distribution scatters back to the node it 
came from. More higher order no-slip boundary 
conditions were introduced by He et al. [23], 
Skordos [24], Noble et al. [25], Inamuro et al. [26], 
Maier et al. [27], Zou and He [28], Ziegler [29], Zou 
et al. [30], He et al. [23] and Chen et al. [31].  

For 0.001>Kn , the no-slip conditions at the 
walls do not hold. Because the LBE method is a 
particle-based method like the direct simulation of 
Monte Carlo (DSMC) method [4], it is applicable to 
slip flows. Specular boundary conditions produce 
free slip conditions at the wall. That is, by using this 
condition, when a particle distribution streams to a 
wall node, the particle distribution scatters back in 
such a way that its velocity component parallel to the 
wall does not change and its velocity component 
normal to the wall changes its sign. In reality, the slip 
velocity is somewhat between no-slip and free-slip 
conditions. So a combination of bounce back and 
specular conditions is used to obtain accurate slip-
velocity at the wall. This idea was used by Tao [32] 
and Zhang et al. [33].  Another boundary condition 
which is introduced for velocity slip condition is 
diffuse-scattering boundary condition (DSBC) 
(Chew [34]). We will examine both conditions in this 
work. 

The relaxation timeτ , which is a typical time 
scale associated with collisional relaxation to the 
local equilibrium, appears in the BGK model for a 

collision operator. In principle, τ  is a complicated 
function of the distribution function f. The drastic 
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simplification associated with the BGK operator is 
the assumption of a constant value for the relaxation 
time scale. Constant relaxation time eliminates the 
compressibility effects which is important for flows 
with high Kn. In order to allow compressibility 
effects, Lim et al. [35] related τ  with Kn, 
namely δxHKn=τ / , where δx  is the 

computational grid length. Nie et al. [36] related the 

non-dimensional relaxation time τ  to Kn and the 
fluid density ρ as H)()a(τ=Kn ρ/0.5− , where H is 

the channel height. The factor 0.5 stems from the 
explicit treatment of the collision term and a is 
chosen to best match the simulated mass flow rate 
with experiments. This model allows using variable 
channel width as well as taking into consideration the 
compressibility effects. Also Tao et al. [32] related 
relaxation time to Knudsen number and local density. 

The lattice Boltzmann simulation of the two-
dimensional driven cavity by Hou et al. [37] covered 
a wide range of Reynolds numbers from 10 to 10,000 
using a 2562 lattice. Two-dimensional cavity flow 
was also studied by Miller [38].  

Nie et al. [36] used the LBE method to simulate 
two-dimensional micro-channel and micro-cavity 
flows. They employed the half-way bounce back rule 
at the surface. Lim et al. [35] used the specular 
bounce-back rule and the extrapolation scheme to 
produce slip effects, and compared their results of 
two-dimensional channel flows with the 
experimental data as well as Arkilic’s analytical 
solution [39]. Zhang et al. [33] implemented the 
tangential momentum accommodation coefficient to 
describe the gas–surface interactions in a LBE-
D2Q9. Their boundary conditions work in a spirit 
similar to the combination of the bounce back rule 
and specular reflection. Tao et al. [32] studied gas 
flow in micro-channels. They captured suitable slip 
velocity in wall using combination of bounce back 
and specular boundary conditions.  

Arkilic et al. [39] investigated two-dimensional 
gas micro-channel flows both experimentally and 
analytically using the Navier -Stokes equations with 
a first-order slip boundary condition. Chen et al. [40] 
numerically solved the two-dimensional, 
compressible Navier-Stokes equations along with a 
first-order slip-velocity boundary condition for 
gaseous flow in a micro-channel. We compare our 
LBM results with the results obtained by the above 
mentioned references.  

The aim of the present work is to use lattice 
Boltzmann methods to simulate gas flow in two-
dimensional micro-geometries, to examine the 
different boundary conditions and relaxation times, 
to obtain and compare the slip-velocities at different 
conditions and with different Knudsen numbers, to 
analyze the effects of compressibility and rarefaction, 
and to obtain the Knudsen minimum phenomenon 
using the LBM. We are also interested in the 
behavior of models when they are used for micro-
scale porous media. 

2.     Lattice Boltzmann method 

The kinetic evolution of the lattice Boltzmann 
equation with the BGK collision approximation is 
[10] 

[ ]t)(x,ft)(x,f
τ

t)(x,f=∆t)+t∆t,c+(xf eq
iiiii −− 1

, 

(1) 
 
where τ  is the dimensionless relaxation time. Eq. (1) 
is a discrete finite difference equation, which is 
second order accurate with respect to space and time. 
For D2Q9 lattice model, that is, for two-dimensional 
problem with nine velocity model (see Fig. 2) the 
discrete velocities are given by: 
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The streaming speed c is defined as ∆t∆x / , where 
∆x and ∆t  are the lattice spacing and time step, 
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The equilibrium distribution function eq
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FIG. 2. D2Q9  Model. 

 
 
where 9/40 =w  and 9/1=wi for i = 1,2,3,4, and 

36/1=wi for 5,6,7,8=i . The macroscopic 

variables for the fluid mass density, fluid momentum, 

and pressure are defined by ∑
9

0=i
if=ρ , 

∑
9

0=i
ii fc=ρU  and 3/2ρc=P . The term τ  in Eq. 

(1) is replaced by 'τ  to take into account the gas 
compressibility [12]. 
 








 −
2

1

2

1
τ

ρ

ρ
+=τ

ref' , (3)     

 
where refρ  is a referenced density and τ  is linked 

with the channel outlet Knudsen number oKn via the 

following equation: 
 

2

1

6/
+

πρ

KnNρ
=τ

ref

oyo
 (4)    

 
where oρ is the outlet gas density and yN is the 

characteristic lattice number. 
The slip velocities on all the solid block surfaces 

and the plate wall boundaries are implemented by 
combining the bounce-back with the specular 
reflection. We define a reflection coefficient br  as 

the proportion of bounce-back reflections in the 
interactions with the wall and br−1  represent the 

specular reflections proportion. We used  7.0=br , as 

compared to results from Arkilics' model [39], to best 
capture the slip-velocity on the solid-gas wall 
implying  that more fluid particles will be reflected in 
the backward direction than the forward direction. 

3.     Results and discussion 

Numerical simulation for different Kn numbers and 
three flow configurations: flow in a micro-Couette, 
micro-channel and in a porous media, are presented.  

3.1     Micro-Couette 

Flow between two parallel plates, when the upper 
plate moves at a constant velocity and the lower plate 
is stationary, is studied for various Knudson 
numbers. Figure 3 shows the velocity profile of the 
gas between the two plates for four different Kn 
numbers, 0.001, 0.02, 0.1, and 0.5. As expected, the 
slip velocity increases with increasing Kn, but the 
velocity profile remains linear and symmetric. The 
slip velocity is negligible for Kn< 0,01. To examine 
the validity of the method as well as the model for 
boundary conditions, we have calculated the slip 
length, ws γU=ξ &/ , where Us is the slip velocity and 

yu=γ ww ∂∂ /& is the strain rate. The results shown in 

Fig. 4 were plotted against the Kn number and 
compared with that of MD, DSMC and Maxwell 
theorem [41-42] resulting in an excellent agreement 
as shown in the figure below.   

 

 
FIG. 3. Velocity profile for different Kn  

for Couette flow. 
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FIG. 4. Slip length as a function of Kn 

 for Couette flow. 

3.2     Micro-channel 

Flow in a micro-channel is simulated using the LBM. 
The height of the channel is fixed at H = 1.2 µ and 
the length is kept constant at L = 100H. The working 
fluids are carbon dioxide (CO2), nitrogen (N2), 
hydrogen (H2), and helium (He). Their 
corresponding Knudsen numbers at the channel 
outlet oKn  are 0.0236, 0.055, 0.1, and 0.16, 

respectively. Deviations of pressure from linear 
pressure drop (i.e., corresponding to incompressible 
fully developed laminar flow) for different inlet 
pressures with the same outlet Knudsen number are 
shown in Fig. 5. Here the vertical coordinate of the 
plot is expressed as oin P)P(P=P /− . As can be 

seen, for the same outlet Knudsen 
number 055.0=oKn , the increase in the inlet 

pressure (i.e., an increase in compressibility within 
the channel) results in a larger deviation from the 
linear pressure distribution as it is expected in an 
incompressible channel flow. Furthermore, the 
location of maximum deviation from linear pressure 
distribution moves toward the channel exit as the 
inlet pressure increases. In this figure, the Arkilics' 
analytical solutions are also shown. The agreement is 
excellent and the locations of the maximum deviation 
from linear pressure distribution are calculated 
accurately. The effects of different outlet Knudsen 
number when the inlet to outlet pressure ratio is fixed 
are shown in Fig. 6. As oKn increases, stronger 

rarefaction effects are observed which corresponds to 
smaller deviation from the linear pressure 
distribution. This means that the rarefaction effects 
tend to decrease the pressure distribution deviation 
caused by the compressibility effect. Thus, the 

compressibility effect and the rarefaction effect have 
contradicting influence on the pressure distribution. 
The distribution of the pressure along the channel is 
somewhat a balance between these two effects. The 
variation of slip-velocity along the length of the wall 
is presented in Fig. 7. Due to the pressure drop along 
the channel, the local Knudsen number increases, 
resulting in an increase in the slip-velocity in the 
streamwise direction. In our simulation results, the 
magnitude and variation trend of the slip-velocity 
agree well with Arkilics' model when a combination 
of bounce back and specular reflection with 

7.0=br is used at the wall boundary condition. 

Figure 8 shows the average velocity variations along 
the streamwise direction. The predicted results of the 
present study and those of Arkilics' are too close to 
be plotted as separated curves. Figure 9 shows the 
ratio of the flow rate at micro-channel to the flow 
rate of conventional fully developed channel flows as 
a function of Knudson number. It can be seen that by 
increasing the Knudson number, the flow rate first 
decreases and then it increases. This phenomenon 
was first observed by Knudson and is now called 
Knudson minimum. It is due to the fact that at the 
lower Knudson numbers, the compressibility effect is 
dominant and thus by increasing the Knudson 
number, the pressure drop is increased and it resists 
the flow in the channel. But at higher Knudson 
numbers, the rarefaction effect is dominant and 
causes the flow rate increase by increasing the 
Knudson number. 

 

 
FIG. 5. Nonlinearity of pressure along the channel  

for Kn =0.055and different Pin/Pout. 
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FIG. 6. Nonlinearity of pressure along the channel  

for Pin/Pout = 1.94 and different Kn. 

 

FIG. 7. Slip-velocity distributions along the wall  
for Kn =0.055. 

 

 
FIG. 8. Average gas velocity along the channel  

for Kn =0.055. 

 
FIG. 9. Mass flow rate in channel for 
 Pin/Pout = 1.43 as a function of Kn. 

3.3     Two-dimensional micro-scale porous media 
flow 

In order to study the flow in porous media, two-
dimensional disordered solid blocks are packed 
between two parallel plates (see Figs. 10). Porosity ε  
represents the fraction void volume in the porous 
structure and is defined as ( ) VVV=ε s /− , whereV is 

the total volume andsV  is the volume of the solid 

blocks. The height of the simulated channels is 
µ2.1=H and the ratio of the channel length L to the 

height H is 2. Isothermal gaseous flows in such 
micro scale porous structures are simulated using the 
lattice Boltzmann method. The calculated results of 
velocity vectors for different values of Knudsen 
number at inlet to outlet pressure 
ratio, 1.1/ =PP outin , are shown in Figs. 10. At higher 

values of Knudsen number, the slip velocities on the 
bottom and top plates are much larger than those at 
the lower Knudsen number. Conversely, the 
velocities away from the plates are lower. The 
volume flow rates per unit area as a function of the 
inlet to outlet pressure difference, for four values of 
porosity: 711.0=ε , ,0.765  0.8560.802, and for two 

different outlet Knudson numbers, are shown in Figs. 
11a and 11b, respectively. The Knudsen number has 
significant influence on the flow rate. The figures 
shows that for the same pressure gradient, the 
volume flow rate increases with the increase of 
Knudsen number, implying a reduction in friction 
drags on the walls and blocks. The flow rate 
increases steeply with increasing porosity. However, 
for structures with relatively small porosity, the 
flow rate is effected to a
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(b) 0.16=Kno  (a) 0.055=Kno  

FIG. 10. Velocity vectors for flow in the porous structure, 0.765=ε and 1.1/ =PP outin . 

 
 

 

  
(b) 0.16=Kno  (a) 0.055=Kno  

FIG. 11. Volume flow rate as a function of the pressure gradient for various ε  and Kn. 
 

 
lesser degree than those having higher levels of 
porosity. The results obtained through simulation 
using the presented LBM method are qualitatively 
consistent with the experimental data [43]. Finally, 
we compare the calculated results of pressure drops 
with the following empirical equations based on 
experimental data, the Ergun correlation [44] and the 
Carman-Kozeny correlation [45] as shown in Fig. 12.  
First, we tried to determine the value of the 
equivalent diameter of the bodypD for the porous 

structure of 0.765=ε by comparing the calculated 
pressure drop with the Carman-Kozeny equation and 
the Ergun equation. We simulated the flow 
for 0.001=Kno  because it can be considered as a 

continuum flow. Comparing the calculated results 
with the above mentioned two empirical equations, 
we found good agreement when µm=Dp 0.16 . The 

calculated dimension-less pressure drops are lower 
than the ones obtained by the Ergun equation for the 
other four Knudsen numbers at lower Reynolds 
numbers as indicated in Fig. 12. To fit the data for 
different Knudsen numbers with a single straight 

line, we scale up the pressure drop by multiplying it 
by ( )nAK+1  as shown in Fig. 13. HerenK  is the 

mean Knudsen number of the inlet and outlet and A 
is a constant. The data are in good agreement with 
the Ergun equation and the Carman-Kozeny equation 
if A is set to be 70. 
 

 
FIG. 12. Pressure drops considering compressibility 

versus Re for .0.765=ε  
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FIG. 13. Pressure drops considering compressibility 

versus Re for .0.765=ε  

 

4.     Conclusion 

The lattice Boltzmann method (LBM) is used to 
study gas flow in micro-geometries. It was shown 
that the slip velocity obtained in micro-Couette flow 
at different values of Knudson number is very 
accurate and similar to that of very expensive 
calculations of MD and DSMC methods. 
Characteristics in the two-dimensional micro-channel 
flow including slip-velocity, nonlinear pressure drop 
and average velocity along the streamwise direction 
were all compared with the available data resulting in 
a good agreement. This shows that the lattice 
Boltzmann method is a promising approach for 
simulating the flow in micro-channels. The influence 
of gas rarefaction in porous media is considered. The 
transport characteristics in relatively simple porous 
structures are studied with the presented LBM 
method. Considering the compressibility and the 
rarefaction, a model for the pressure drop is 
presented based on the Ergun equation and the 
Carman-Kozeny equation. 
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