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Application of LBM in Simulation of Flow in Simple
Micro-Geometriesand Micro Porous M edia

E. Shirani and S. Jafari
Department of Mechanical Engineering, Isfahan University ohiielogy, Isfahan, Iran

Isothermal gas flow is simulated in micro-Couettécro-channel and micro porous media using théca®Boltzmann
model (LBM). To consider compressibility and rarfan effects, two relaxation time models relate&Khudsen numbefn
and local density are used. Diffuse-scattering bdaoy condition (DSBC) and a combination of bounaekoand specular
boundary conditions are used to obtain slip vejoattthe wall. For micro-Couette flow, the slip @ity and the slip length
as a function oKn are calculated and compared with that of MD, DSkt Maxwell theorem. For micro-Couette, the
velocity profile along with the slip velocity foiiféerent values oKn and the slip length as a function of Knudson nunaive
studied. It is shown that the flow structures ararged by changing the valueskaf. The nonlinear pressure drop and the
velocity distribution along the streamwise direntin the micro-channel flow are obtained and coregavith available data,
which resulted in good agreement. The Knudsen mimmphenomenon is successfully predicted within LigM
framework. Finally, gas flow characteristics in migporous media for differerKn numbers, porosity and inlet to outlet
pressure ratio are studied. The effects of comjbiéigsand rarefaction are considered.

1. Introduction

Micro-electronic-mechanical-systems (MEMS) are a
rapidly emerging technology in which micron-scaled
devices are constructed using microelectronic
fabrication techniques. Many different devices are
under development, ranging from channels for
integrated cooling of electronic circuits, flow
sensors, and valves for gas pressure regulation, to
complex systems consisting of channels, pumps,
valves, sensors and other components, all integrated
on a single module or as sandwiched modules [1]. In
order to design such devices effectively, it is
necessary to understand and employ the physical
laws governing the flow in small conduits. Because
of obvious difficulties associated with testing and
validating these devices experimentally, numerical
analysis is an alternative for investigating the flow
inside micro-channels and other more complex
geometries [2].

The Knudsen numbeKn, which is defined
askn = A/ H and compares the mean free pdtho
the smallest flow characteristic lendth provides a
direct means of validating the continuum approach.
Fig. 1 describes different regimes of fluid flow
depending on the Knudsen number. Kor>10, the
system can be considered to be a free molecular
flow. A flow is considered a continuum for
Kn< 0.001 The intermediate valueski, for
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0.1< Kn< 10, are associated with a transition flow
regime, while those within the range of
0.001< Kn< 0.1represent a slip flow regime. The
Navier—Stokes equations may be applied to flows
within the slip regime or marginally transitiondl i
the first-order or higher-order velocity slip boamy
conditions are employed at the wall. For flowsha t
high transition or free molecular regimes, it regsi
either a direct solution of the full Boltzmann
equation, or particle-based methods such as
molecular dynamics (MD) [3] or a gas dynamic
model such as the direct simulation Monte Carlo
(DSMC) [4].

In the last decade or so, the lattice Boltzmann
model (LBM) which is also called lattice Boltzmann
equation or Boltzmann cellular automata in the
literature, has emerged as a new and effective
numerical approach of computational fluid dynamics
and achieved considerable success in simulating) flu
flows and associated transport phenomena. The
lattice Boltzmann model is based on microscopic
models and mesoscopic kinetic equations. The LBM
constructs simplified kinetic models that incorgera
the essential physics of microscopic or mesoscopic
processes so that the macroscopic averaged
properties obey the desired macroscopic equations.
In the LBM, a simplified version of the kinetic
equation is used rather than solving complicated
kinetic equations such as the full Boltzmann
equation. It has the advantage of implementation of
fully parallel algorithms.
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FIG. 1. Knudsen number regimes.

The LBM simulates fluid flows by tracking the
evolution of single-particle distribution, and
computationally it is a stable, accurate and edfici
method. The LBM originated from lattice gas (LG)
automata. It can also be viewed as a special finite
difference scheme for the kinetic equation of the
discrete-velocity distribution function. The LBM
encompasses a lattice, an equilibrium distribution
and a kinetic equation called, the lattice Boltzman
equation (LBE). The LBM was first introduced by
McNamara and Zanetti [5] and it requires much less
computational effort than the MD and DSMC. In
fact, unlike MD and DSMC methods, the number of
particles distributed in the computational fieldtie
LBM is not related to the number of molecules and i
is many orders of magnitude less. A simple
linearized version of the collision operator, which

makes use of a relaxation ti retowards the local
equilibrium using a single time relaxation, is the
Bhatnagar-Gross-Krook (BGK) collision operator
(Bhatnagaret al. [6]) and has been independently
suggested by several authors (Qian [7], Cael.
[8]). The LBM can be used to simulate flows with a
wide range of Knudsen numbers and especially for
flows with highKn, where the flow regimes are slip
and transition flows. The method is particularly
useful in applications involving interfacial dynaisj
multiphase and multi-component fluid flows and
flows with complex geometries such as flow in
porous media [9-11]. The method is also used to
simulate turbulent flows (Martineet al. [12] and
flows with moderate heat transfer [13-20].

The LBM has three important and distinct

features compared to the other numerical methods:

The convection operator (or streaming process) of
the LBM in phase space (or velocity space) is linea
the incompressible Navier-Stokes (NS) equations can
be obtained in the nearly incompressible limithaf

LBM and the LBM utilizes a minimal set of
velocities in phase space.

To obtain no-slip velocity conditions at the wall,
one of the simplest ways is to use the first order
method called the bounce-back scheme (Wolfram
[21], Lavalleeet al. [22]). By using this scheme,
when a particle distribution streams to a wall node
the particle distribution scatters back to the ndde
came from. More higher order no-slip boundary
conditions were introduced by Het al. [23],
Skordos [24], Nobleet al. [25], Inamuroet al. [26],
Maier et al.[27], Zou and He [28], Ziegler [29], Zou
et al.[30], Heet al.[23] and Cheret al.[31].

ForKn>0.001, the no-slip conditions at the
walls do not hold. Because the LBE method is a
particle-based method like the direct simulation of
Monte Carlo (DSMC) method [4], it is applicable to
slip flows. Specular boundary conditions produce
free slip conditions at the wall. That is, by usthgs
condition, when a particle distribution streamsato
wall node, the particle distribution scatters back
such a way that its velocity component parallehi®
wall does not change and its velocity component
normal to the wall changes its sign. In reality #tip
velocity is somewhat between no-slip and free-slip
conditions. So a combination of bounce back and
specular conditions is used to obtain accurate slip
velocity at the wall. This idea was used by Tao] [32
and Zhanget al [33]. Another boundary condition
which is introduced for velocity slip condition is
diffuse-scattering boundary condition (DSBC)
(Chew [34]). We will examine both conditions inghi
work.

The relaxation timz, which is a typical time
scale associated with collisional relaxation to the
local equilibrium, appears in the BGK model for a

collision operator. In principler is a complicated
function of the distribution functiofi. The drastic
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simplification associated with the BGK operator is
the assumption of a constant value for the relarati
time scale. Constant relaxation time eliminates the
compressibility effects which is important for flew
with high Kn. In order to allow compressibility
effects, Lim et al [35] related  with Kn,
namehz= KnH/éx, where ox is the

computational grid length. Niet al [36] related the

non-dimensional relaxation timz to Kn and the
fluid densityp asKn= a(r —-0.5)/( pH), whereH is

the channel height. The factor 0.5 stems from the
explicit treatment of the collision term aral is
chosen to best match the simulated mass flow rate
with experiments. This model allows using variable
channel width as well as taking into considerattan
compressibility effects. Also Taet al. [32] related
relaxation time to Knudsen number and local density

The lattice Boltzmann simulation of the two-
dimensional driven cavity by Hoet al.[37] covered
a wide range of Reynolds numbers from 10 to 10,000
using a 2562 lattice. Two-dimensional cavity flow
was also studied by Miller [38].

Nie et al. [36] used the LBE method to simulate
two-dimensional micro-channel and micro-cavity
flows. They employed the half-way bounce back rule
at the surface. Limet al [35] used the specular
bounce-back rule and the extrapolation scheme to
produce slip effects, and compared their results of
two-dimensional  channel  flows  with  the
experimental data as well as Arkilic’s analytical
solution [39]. Zhanget al. [33] implemented the
tangential momentum accommodation coefficient to
describe the gas—surface interactions in a LBE-
D2Q9. Their boundary conditions work in a spirit
similar to the combination of the bounce back rule
and specular reflection. Tagt al. [32] studied gas
flow in micro-channels. They captured suitable slip
velocity in wall using combination of bounce back
and specular boundary conditions.

Arkilic et al. [39] investigated two-dimensional
gas micro-channel flows both experimentally and
analytically using the Navier -Stokes equationshwit
a first-order slip boundary condition. Chenal. [40]
numerically solved the two-dimensional,
compressible Navier-Stokes equations along with a
first-order slip-velocity boundary condition for
gaseous flow in a micro-channel. We compare our
LBM results with the results obtained by the above
mentioned references.
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The aim of the present work is to use lattice
Boltzmann methods to simulate gas flow in two-
dimensional micro-geometries, to examine the
different boundary conditions and relaxation times,
to obtain and compare the slip-velocities at défer
conditions and with different Knudsen numbers, to
analyze the effects of compressibility and raredet
and to obtain the Knudsen minimum phenomenon
using the LBM. We are also interested in the
behavior of models when they are used for micro-
scale porous media.

2. Lattice Boltzmann method

The kinetic evolution of the lattice Boltzmann
equation with the BGK collision approximation is
(10]

f; (x+ ¢ At,t+ At)= fi(x,t)—l f, (x,t) = f,59(x.0)],
(1)

where 7 is the dimensionless relaxation time. Eq. (1)
is a discrete finite difference equation, which is
second order accurate with respect to space armd tim
For D2Q9 lattice model, that is, for two-dimensibna
problem with nine velocity model (see Fig. 2) the
discrete velocities are given by:

Ky)
I
o

for i=1,2,3,4:
¢ = (cogi—1)z /2,sin(i —1)x /2)c
for i=5,6,7,8
¢ = J2(coq(i ~5)x/2+x/4],sin[(i —5)x/2+x /4])c

The streaming speecis defined as4x/ At , where
Axand At are the lattice spacing and time step,
respectively.

The equilibrium distribution functior f,* for
the D2Q9model is

1+ 3(c; U)/ c? + 4.5c, U)? / c*
P 2,2
-1.5U/c

f,59=w,

)
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FIG. 2. D2Q9 Model.

wherew, = 4/9 and w, =1/9for i = 1,2,3,4, and
w; = 1/36for i=5,6,7,8. The macroscopic
variables for the fluid mass density, fluid momentu

9
and pressure are defined p:Zfi,
i=0

9
pU = Zci f. and P= pc? /3. The term¢ in Eq.
i=0
(1) is replaced byr to take into account the gas
compressibility [12].

. :£+ Pref (T_ij, @3)
2 p 2

where p is a referenced density a zlis linked

with the channel outlet Knudsen numl Kn, via the
following equation:

_ poNyKno 1
e @)
Pret N 16 2

where p, is the outlet gas density a N is the

characteristic lattice number.

The slip velocities on all the solid block surfaces
and the plate wall boundaries are implemented by
combining the bounce-back with the specular
reflection. We define a reflection coefficier, as

the proportion of bounce-back reflections in the
interactions with the wall anl-r, represent the
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specular reflections proportion. We usr,= 0.7, as

compared to results from Arkilics' model [39], tesb
capture the slip-velocity on the solid-gas wall
implying that more fluid particles will be reflest in
the backward direction than the forward direction.

3. Resultsand discussion

Numerical simulation for differeniKn numbers and
three flow configurations: flow in a micro-Couette,
micro-channel and in a porous media, are presented.

3.1 Micro-Couette

Flow between two parallel plates, when the upper
plate moves at a constant velocity and the lowatepl

is stationary, is studied for various Knudson
numbers. Figure 3 shows the velocity profile of the
gas between the two plates for four differédm
numbers, 0.001, 0.02, 0.1, and 0.5. As expected, th
slip velocity increases with increasirin, but the
velocity profile remains linear and symmetric. The
slip velocity is negligible fokn< 0,01 To examine
the validity of the method as well as the model for
boundary conditions, we have calculated the slip
length, £ = U, /7y, , whereUs is the slip velocity and
7w = 0u,, /0y is the strain rate. The results shown in

Fig. 4 were plotted against th€n number and
compared with that of MD, DSMC and Maxwell
theorem [41-42] resulting in an excellent agreement
as shown in the figure below.

................. Kr=0.001 -
sk Kr=0.01 7
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FIG. 3. Velocity profile for different Kn
for Couette flow.
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FIG. 4. Slip length as a function Kh
for Couette flow.

3.2 Micro-chann€

Flow in a micro-channel is simulated using the LBM.
The height of the channel is fixed ldt= 1.2 and

the length is kept constantlat 10H. The working
fluids are carbon dioxide (CO2), nitrogen (N2),
hydrogen (H2), and helium (He). Their
corresponding Knudsen numbers at the channel
outlet Kn, are 0.0236, 0.055, 0.1, and 0.16,

respectively. Deviations of pressure from linear
pressure drop (i.e., corresponding to incompressibl
fully developed laminar flow) for different inlet
pressures with the same outlet Knudsen number are
shown in Fig. 5. Here the vertical coordinate d th
plot is expressed P=(P-P,)/P,. As can be
seen, for the same outlet Knudsen
numbe Kn,=0.055, the increase in the inlet

pressure (i.e., an increase in compressibility iwith
the channel) results in a larger deviation from the
linear pressure distribution as it is expected in a
incompressible channel flow. Furthermore, the
location of maximum deviation from linear pressure
distribution moves toward the channel exit as the
inlet pressure increases. In this figure, the Agkil
analytical solutions are also shown. The agreerisent
excellent and the locations of the maximum dewatio
from linear pressure distribution are calculated
accurately. The effects of different outlet Knudsen
number when the inlet to outlet pressure ratiaxisd
are shown in Fig. 6. A:<Kn, increases, stronger

rarefaction effects are observed which correspémds
smaller deviation from the linear pressure
distribution. This means that the rarefaction effec
tend to decrease the pressure distribution dewiatio
caused by the compressibility effect. Thus, the
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compressibility effect and the rarefaction effeavé
contradicting influence on the pressure distributio
The distribution of the pressure along the chaisel
somewhat a balance between these two effects. The
variation of slip-velocity along the length of thall

is presented in Fig. 7. Due to the pressure dropgal
the channel, the local Knudsen number increases,
resulting in an increase in the slip-velocity ireth
streamwise direction. In our simulation resulte th
magnitude and variation trend of the slip-velocity
agree well with Arkilics' model when a combination
of bounce back and specular reflection with
r,=07is used at the wall boundary condition.

Figure 8 shows the average velocity variations glon
the streamwise direction. The predicted resultthef
present study and those of Arkilics' are too cltuse

be plotted as separated curves. Figure 9 shows the
ratio of the flow rate at micro-channel to the flow
rate of conventional fully developed channel flcags

a function of Knudson number. It can be seen thgat b
increasing the Knudson number, the flow rate first
decreases and then it increases. This phenomenon
was first observed by Knudson and is now called
Knudson minimum. It is due to the fact that at the
lower Knudson numbers, the compressibility effsct i
dominant and thus by increasing the Knudson
number, the pressure drop is increased and ittsesis
the flow in the channel. But at higher Knudson
numbers, the rarefaction effect is dominant and
causes the flow rate increase by increasing the
Knudson number.
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FIG. 9. Mass flow rate in channel for
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3.3 Two-dimensional micro-scale porous media
flow

In order to study the flow in porous media, two-
dimensional disordered solid blocks are packed
between two parallel plates (see Figs. 10). Por &;it
represents the fraction void volume in the porous
structure and is defined ¢ = (V -V, )/V , whereV is

the total volume arV; is the volume of the solid

blocks. The height of the simulated channels is
H=12uand the ratio of the channel lendtho the

height H is 2. Isothermal gaseous flows in such
micro scale porous structures are simulated usiag t
lattice Boltzmann method. The calculated results of
velocity vectors for different values of Knudsen
number at inlet to outlet pressure
ratio, R, / P, = 1.1, are shown in Figs. 10. At higher

values of Knudsen number, the slip velocities an th
bottom and top plates are much larger than those at
the lower Knudsen number. Conversely, the
velocities away from the plates are lower. The
volume flow rates per unit area as a function & th
inlet to outlet pressure difference, for four valus
porosity: £ =0.711, 0.765 0.8020.856and for two

different outlet Knudson numbers, are shown in Figs
11a and 11b, respectively. The Knudsen number has
significant influence on the flow rate. The figures
shows that for the same pressure gradient, the
volume flow rate increases with the increase of
Knudsen number, implying a reduction in friction
drags on the walls and blocks. The flow rate
increases steeply with increasing porosity. However
for structures with relatively small porosity, the
flow rate is effected to a
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(a)Kn, = 0.055

(b)Kn,=0.16

FIG. 10. Velocity vectors for flow in the porousistture,e = 0.765anc R, / P, = 1.1.
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FIG. 11. Volume flow ratas a function of the pressure gradient for var ¢ uandKn.

lesser degree than those having higher levels of
porosity. The results obtained through simulation
using the presented LBM method are qualitatively
consistent with the experimental data [43]. Finally
we compare the calculated results of pressure drops
with the following empirical equations based on
experimental data, the Ergun correlation [44] dmal t
Carman-Kozeny correlation [45] as shown in Fig. 12.
First, we tried to determine the value of the
equivalent diameter of the bcD, for the porous

structure of ¢ = 0.765by comparing the calculated
pressure drop with the Carman-Kozeny equation and
the Ergun equation. We simulated the flow
for Kn, = 0.001 because it can be considered as a

continuum flow. Comparing the calculated results
with the above mentioned two empirical equations,
we found good agreement wtD, = 0.16um . The

calculated dimension-less pressure drops are lower
than the ones obtained by the Ergun equation for th
other four Knudsen numbers at lower Reynolds
numbers as indicated in Fig. 12. To fit the data fo
different Knudsen numbers with a single straight

line, we scale up the pressure drop by multiplyiing
by (1+ AKR) as shown in Fig. 13. HeKn is the
mean Knudsen number of the inlet and outlet And

is a constant. The data are in good agreement with
the Ergun equation and the Carman-Kozeny equation
if Ais set to be 70.

S Carran — Kozeny
LBM,D, =0 16m

————Kn, = 0055
e in, = 0.0236

i Ll el il IR
10° 107 107 10° 10’
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FIG. 12. Pressure drops considering compressibility
versusRefore = 0.765
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4. Conclusion

The lattice Boltzmann method (LBM) is used to
study gas flow in micro-geometries. It was shown
that the slip velocity obtained in micro-Couettewl

at different values of Knudson number is very
accurate and similar to that of very expensive
calculations of MD and DSMC methods.
Characteristics in the two-dimensional micro-channe
flow including slip-velocity, nonlinear pressureogr
and average velocity along the streamwise direction
were all compared with the available data resuliting

a good agreement. This shows that the lattice
Boltzmann method is a promising approach for
simulating the flow in micro-channels. The influenc
of gas rarefaction in porous media is considerde. T
transport characteristics in relatively simple pmro
structures are studied with the presented LBM
method. Considering the compressibility and the
rarefaction, a model for the pressure drop is
presented based on the Ergun equation and the
Carman-Kozeny equation.
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