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The present study deals with spatially homogeneous Bianchi type-II, VIII & IX holographic dark energy cosmological models in Brans 
and Dicke (1961) theory of gravitation. To get the deterministic models of the Universe, we have used a power law between scalar field 
and the scale factor of the Universe. It has been found that the anisotropic distribution of dark energy leads to the present accelerated 
expansion of the Universe. All the models obtained and presented here are expanding, non-rotating and accelerating. Also some 
important features of the models including look-back time, distance modulus and luminosity distance versus red shift with their 
significances are discussed. 
 

1. Introduction 
 

It has been believed that the Universe is undergoing a 
phase of accelerated expansion, which is indicated by 
such astronomical observations as Type-I a supernovae 
(SNe) (Riess et al.[2]), cosmic microwave background 
(CMB) anisotropy (Spergel et al.[3]) and large scale 
structure (LSS) (Tegmark et al. [4]). This implies that 
there is a mysterious component in the Universe, which 
has a large negative pressure called dark energy (DE). 
The Wilkinson Microwave Anisotropy Probe (WMAP) 
satellite experiment indicates that the Universe is 
spatially flat on a large scale and the dark energy, dark 
matter (DM) and baryon matter in the Universe make up 
about 73%, 23%, and 4%, respectively.  
    Recently, there were some studies showing that the 
equation of state  

(EoS) of dark energy 
x

x
x

p
w


 might evolve 

from 1xw to 1xw .When these SNe results are 

combined with WMAP 5-year data the 95% confidence 

limits on  non-evolving EoS are −1.11 < xow < −0.86 

(Hinshaw et al. [5]). More scenarios have been proposed 
as the candidates of DE to explain the accelerated 
expansion. What fits best with the observational data is 
the cosmological constant λ (Carroll [6]), which has the 
EoS w = −1 and is called the LCDM model in which the 
cosmological constant is combined with the cold dark 
matter. However, it is plagued with some problems i.e., 
the “cosmic coincidence” problem (Fitch et al. [7]) and 
the “fine tuning” problem (Peebles and Ratra [8]).  
    A number of scalar field models have been 
constructed such as quintessence (Padmanabhan [9]), 
phantom (Caldwell [10]), K-essence (Chiba et al. [11]), 
quintom (Feng et al. [12]) and tachyon (Sen [13]). 
Further, models such as Chaplygin gas (CG) 
(Kamenshchik et al. [14]) and modified Chaplygin gas 
(MCG) (Chimento [15]), Wu Y B et al. [16, 17], which 
attempt to unify DE and DM, are proposed by allowing 

for a fluid with an EoS that evolves between them.                  
Recently, the most remarkable observational discoveries 
of distant type-I a supernovae and cosmic microwave 
back ground have shown that our universe has entered a 
phase of accelerated expansion in the recent past 
(Perlmutter et al. [18], Riess et al. [2], Bennett et al. 
[19]). These observations have made it clear that the 
current matter-energy density of the Universe is close to 
its critical value of which 30 % is attributed to 
relativistic matter including both baryons and dark 
matter and 70 % to dark energy (Ade et al. [20]).  
    The cause of sudden transition from the earlier 
deceleration phase to the recent acceleration phase and 
the source of accelerated expansion are still unknown. 
According to the Einstein’s theory of general relativity, 
the cause of such acceleration, one need to introduce a 
component to the matter distribution of the Universe 
with a large negative pressure and makes up about three 
quarters of the total cosmic density.This exotic type of 
unknown repulsive force is termed as dark energy (DE).  
Recently many radically different models have been 
proposed to satisfy the present value of DE. The 
simplest candidate for DE is the cosmological constant 
(Λ) with equation of state parameter ω = −1 since it fits 
the observational data well, but it needs to be extremely 
fine-tuned to satisfy the current value of DE (Copeland 
et al. [21]). At present Λ with a dynamical character is 
preferred over a constant Λ to solve cosmological 
constant problem especially a time dependent Λ which 
has decreased slowly from its large initial value to reach 
its present small value (Overduin et al. [22]).  
    To further investigate the properties of dark energy, 
many dynamical dark energy models have been 
proposed such as quintessence with EoS ω >−1 
(Barreiro et al. [23]), phantom with EoS ω <−1 
(Caldwell [24]), tachyon (Bagla et al. [25], Sen [13]), 
Padmanabhan and Choudhury [26], k-essence 
(Armendariz et al. [27]), dilatonic ghost condensate 
(Gasperini et al. [28]), quartessence (Leon et al. [29]) 
and so forth. The cosmic viscosity is also an effective 
quantity as caused mainly by the non-perfect cosmic 
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contents interactions and may play a role as dark energy 
candidate causing the observed acceleration of the 
universe (Zimdahl et al. [30], Cataldo et al. [31]).  
     Holographic dark energy is the nature of DE can also 
be studied according to some basic quantum 
gravitational principle. According to this principle 
(Susskind [32]), the degrees of freedom in a bounded 
system should be finite and does not scale by it volume 

but with its boundary era. Here  is the vacuum 

energy density. Usingthis idea in cosmology we take 

  as DE density. The holographic principle is 

considered as another alternativeto the solution of DE 
problem. This principle was first considered by ’t Hooft 
[33] in the context of black hole physics.  
     In the context of dark energy problem though the 
holographic principle proposes a relation between the 
holographic dark energy density   and the Hubble 

parameter H as 2H , it does not contribute to the 

present accelerated expansion of the Universe. Granda 
and Olivers [34] have proposed a holographic density of 

the form ,2 HH   where H is the Hubble 

parameter and ,  are constants, which must satisfy the 
conditions imposed by the current observational data. 
They showed that this new model of dark energy 
represents the accelerated expansion of the Universe and 
is consistent with the current observational data. Granda 
and Olivers [35] have also studied the correspondence 
between the quintessence, tachyon, k-essence and 
dilation dark energy models with this holographic dark 
energy model in the flat FRW universe. But there is a 
cosmological view that the universe might have been 
anisotropic and also inhomogeneous in the very early 
era and that in the course of its evolution these 
characteristics might have been wiped out under the 
action of some processes or mechanism, resulting in an 
isotropic and homogeneous universe.  
     Spatially homogeneous and anisotropic cosmological 
models play a significant role in the description of large 
scale behavior of the Universe and such models have 
been widely studied by many authors in search of a 
relativistic picture of the early universe. Recently, Kiran 
et al. [36,37] have studied minimally interacting dark 
energy models in scalar tensor theories. Adhav et al. 
[38] have discussed interacting dark matter and 
holographic dark energy in Bianchi type-V universe. 
    Brans-Dicke [1] theory of gravitation is a natural 
extension of general relativity which introduces an 
additional scalar field  besides the metric tensor 

ijg and dimensionless coupling constant . The Brans - 

Dicke [1] field equations for combined scalar and tensor 

field are given by
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and , 18 (3 2 );
k Tk                           (2)                                                      

Where,
ijijij RgRG

2

1
  is an Einstein tensor, R  is the 

scalar curvature,   and n  are constants, ijT  is the 

stress energy tensor of the matter and comma and 
semicolon denote partial and covariant differentiation, 
respectively.  
     Also, we have energy – conservation equation  

0; ij
jT                                     (3)     

Several aspects of Brans-Dicke cosmology have been 
extensively investigated by many authors. Rao et al. 
[39] have studied LRS Bianchi type-I dark energy 
cosmological model in Brans-Dicke theory of 
gravitation. Rao and Sireesha [40] have discussed 
Bianchi types II, VIII & IX string cosmological models 
with bulk viscosity in Brans-Dicke theory of gravitation. 
Rao and Sireesha [41] have studied higher dimensional 
string cosmological model in a scalar-tensor theory of 
gravitation. Rao and Sireesha [42] have investigated 
Bianchi type-II, VIII & IX cosmological models with 
strange quark matter attached to string cloud in Brans-
Dicke and General theory of gravitation.  
     Bianchi type space-times play a vital role in 
understanding and description of the early stages of 
evolution of the Universe.  In particular, the study of 
Bianchi types II, VIII & IX universes are important 
because familiar solutions like FRW universe with 
positive curvature, the de Sitter universe, and the Taub- 
Nut solutions correspond  Bianchi type II, VIII & IX 
space- times. Rao et al. [43] have studied Bianchi types 
II, VIII & IX string cosmological models with bulk 
viscosity in a theory of gravitation. Rao et al. [44] have 
investigated Bianchi type-II, VIII and IX dark energy 
cosmological model in Saez-Ballester theory of 
gravitation. Rao et al. [45] have discussed perfect fluid 
cosmological models in a modified theory of gravity.  
    This paper is outlined as follows. In Sec. 2, we have 
obtained the Brans - Dicke field equations for Bianchi 
type-II, VIII and IX metric in the presence of matter and 
holographic dark energy. In Sec. 3, we obtained the 
solution of the field equations. We also discuss some of 
the features of this model including effective EoS and 
the evolution of energy density between DE and DM. In 
Sec.4, we discuss some important properties of the 
model. Some conclusions are presented in the last 
section. 
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2. Metric and Energy Momentum Tensor 
 
We consider a spatially homogeneous Bianchi type-II,  
 
VIII & IX metrics of the form 

 22 2 2 2 2 2 2( ) ( )ds dt R d f d S d h d          
 

                                                                              (4) 
Where,   ,,  are the Eulerian angles, Rand S are 

functions of t only. 
It represents 

Bianchi type - II       if 1)( f  and   )(h  

Bianchi type-VIII if  Coshf )(  and 

 Sinhh )(  

Bianchi type - IX    if  Sinf )(  and 

 Cosh )(  

The energy momentum tensors for matter and the 

holographic energy are defined as  

juiumijT 
                                                    

(5) 

and     ijgjuiupijT               (6) 

Where m ,  are energy densities of matter and 

holographic dark energy and p is the pressure of 

holographic dark energy. 
In a co moving coordinate system, we get 

m
TTTT 
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Where, the quantities  ,m and p are functions of 

‘t’ only. 
 

3. Solutions of Field equations 
 
Now with the help of (5) to (7), the field equations (1) 
for the metric (4) can be written as 
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Here the overhead dot denotes differentiation with 
respect to ‘t’.  
 
When 1&1,0   the field equations (8) to (13) 
correspond to the Bianchi types II, VIII & IX universes, 
respectively. 
 

Using the transformation SdTRdt 2 , the above field 
equations (8) to (13) will reduce to 
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Here the overhead dash denotes differentiation with 
respect to ’T’. 
    Since we are considering the Bianchi type-II, VIII & 
IX metrics, we have  cos)(&sinh)(,)(  hhh  

respectively. Therefore, from the equation (17), we will 
get the following possible cases with 0)( h  
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From the above three possibilities, we will consider only 
the 1st possibility since in other two cases we will get 
cosmological models in general relativity. 
 
3.1 Cosmological models in Brans-Dicke theory 
 
We will get cosmological models in Brans-Dicke theory 

only in case of 00 

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and
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we get cSR  . 

Without loss of generality by taking the constant of 
integration 0c , we get SR                                (20) 
The field equations (14) to (16) are only five 
independent equations with seven 
unknowns  &,,,,  pSR m , which are functions 

of ‘T’. Since these equations are non-linear in nature, in 
order to get a deterministic solution we take the 
following plausible physical condition:  

The relation between the scalar field  and the scale 

factor of the universe )(ta given by  
ma0 

                                                                  
(21) 

where 
0  and 0m are constants. 

From equations (14) – (16), (18) & (19), we get 
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The continuity equation can be obtained as 
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The continuity equation of the matter is 
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The continuity equation of the holographic dark energy 
is 
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The barotropic equation of state 
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3.2 Bianchi type-II ( 0 ) cosmological model
 

 
If 0 , the equation (22) can be written as 
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From equation (27), we get 
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From equations (21), (28) & (29), we get 

2)]32(2[0

m
kTk


                                    (30)                                                        

The holographic dark energy density are given by 
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Where, H is the Hubble parameter, α and β are 
constants which must satisfy the restrictions imposed by 
the current observational data. 
From equations (31), (28) & (29), we get the 
holographic dark energy density 
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From equations (16), (28), (29), (30) & (32), we get 
the matter energy density 
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From equations (15), (28), (29) & (30), we get 
the pressure of holographic dark energy 
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From equations (26),(32) & (34), we get  
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The coincident parameter is 
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The metric (4) in this case can be written as 
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                                                                                    (37) 
Thus (37) together with (32) to (35) constitutes a 
Bianchi type-II holographic dark energy cosmological 
model in Brans-Dicke [1] scalar tensor theory of 
gravitation. 
 
3.3 Bianchi type-VIII ( 1 ) cosmological model

 
 
If, 1 , the equation (22) can be written as 
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From equation (38), we get 
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3k is an integrating 

constant. 
From equations (20) & (39), we get 
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From equations (21), (39) & (40), we get 
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The holographic dark energy density are given by 
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Where, H is the Hubble parameter. 
From equations (42), (39) & (40), we get the 
holographic dark energy density 
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From equations (16), (39),(40),(41) & (43), we get 

the matter energy density 
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(44)

                                                  

From equations (15), (39), (40) & (41), we get 
the pressure of holographic dark energy 
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From equations (26),(43) & (45), we get 
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The coincident parameter is 
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The metric in Eqn. (4), in this case can be written as 
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Thus Eqn. (48) together with Eqns. (43) to (47) 
constitutes a Bianchi type-VIII holographic dark energy 
cosmological model in Brans-Dicke [1] scalar tensor 
theory of gravitation. 
 
3.4 Bianchi type-IX ( 1 ) cosmological model

 
 
If, 1 , the equation (22) can be written as 
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From equation (49), we get 
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Where, 
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and 3k is an integrating 

constant. 
From equations (20) & (50), we get 
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From equations (21), (50) & (51), we get 
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The holographic dark energy density are given by 
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Where, H is the Hubble parameter. 
From equations (53), (50) & (51), we get the 
holographic dark energy density 
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From equations (16), (50), (51),(52) & (54), we get 
the matter energy density 
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From equations (15), (50), (51) & (52), we get 
the pressure of holographic dark energy 
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From equations (26), (54) & (56), we get 
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The coincident parameter is 
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The metric (4), in this case can be written as 
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 (59) 

Thus (59) together with (54) to (58) constitutes a 
Bianchi type-IX holographic dark energy cosmological 
model in Brans-Dicke [1] scalar tensor theory of 
gravitation. 
 

4. Some other important properties of the models 
 
The spatial volume for the models is  
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for Bianchi type-II,VIII & IX respectively.      
The average scale factor for the model is  
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 The expression for expansion scalar   calculated for 
the flow vector iu   is given by 
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and the shear scalar   is given by 
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The deceleration parameter q is given by 
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The deceleration parameter appears with negative sign 
implies accelerating expansion of the universe, which is 
consistent with the present day observations.  
The Hubble’s parameter H is given by 
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The mean anisotropy parameter Amis given by 
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Look-back time and red shift: the look-back time, 

)(0 zttt  is the difference between the age of 

the Universe at present time (z=0) and the age of the  
Universe when a particular light ray at red shift z, the 

expansion scalar of the universe )( zta is related to 0a by 

a
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z 01  , where 0a is the present scale factor. Therefore 

from (4.2), we get 
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This equation can also be expressed as 
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Where,
0

H is the Hubble’s constant. 

Luminosity distance: 
Luminosity distance is defined as the distance which 
will preserve the validity of the inverse law for the fall 
of intensity and, is given by  

                  0
)1(

1
azrLd                                  (69)                                                                                                 

Where, 1r is the radial coordinate distance of the object 

at light emission and, is given by 
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From equations (69) and (70), we get 
The luminosity distance  
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From equations (70) and (71), we get 
The distance modulus  
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The tensor of rotation 

ijujiuijw ,,  is identically zero and hence this 

universe is non-rotational. 
 

5. Discussion and Conclusions 
 
 In this paper, we have presented spatially homogeneous 
Bianchi type - II, VIII & IX holographic dark energy 
cosmological models in Brans-Dicke [1] scalar tensor 
theory of gravitation. 
The following are the observations and conclusions. 

 The models are always isotropic and have 

singularity at
2

3

k

k
T


 .  

 The volume decreases with the increase of time 
i.e., as T , the spatial volume vanishes.  

 At 
2

3

k

k
T


 , the expansion scalar , shear 

scalar  and the Hubble parameter H 

decreases with the increase of time. 

 From (66), one can observe that 0mA and 

this indicates that these universes always 
expand isotropically.  

 For all the three models, the energy density, the 
pressure and the coincident parameter of 
holographic dark energy will decreases with 
the increase of time’T ’. 

 The deceleration parameter appears with 
negative sign implies accelerating expansion of 
the universe and hence it represents present 
universe.  

 We have obtained expressions for look-back 
time T , distance modulus )(zD and luminosity 

distance Ld versus red shift and discussed their 

significance. 

 All the models presented here are isotropic, 
non-rotating, shearing and also accelerating.  
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