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We have predicted the phase transition pressures and corresponding relative volume change of LaTe and SmTe having 
NaCl-type structure under high pressure using three body interaction potential (TBIP) approach and found better results with 
TBIP. In addition, we have checked the conditions for relative stability in terms of modified Born criterion and also found 
that LaTe and SmTe follow the universal equation of state described by Vinet et al. 

1. Introduction 

Most Rare Earth (RE) monochalcogenides show 
NaCl(B1)→CsCl(B2) structural phase transition and 
attracted the attention of both experimental and 
theoretical workers. These compounds have 
attracted attention due to their magnetic and 
electrical properties [1]. The presence of 4f- 
electron in these compounds is mainly responsible 
for these peculiar physical properties. They show 
metallic nature when the rare earth ion is in 
trivalent state and semi-conducting when in 
divalent state. The pressure-volume relationship for 
divalent rare-earth chalcogenides have been 
extensively done by high-pressure X-ray diffraction 
technique [2-4].  

Although considered a proper reference 
material, lanthanum monochalcogenides LaX (X= 
S, Se, Te) and its high pressure structural properties 
have been less studied experimentally. Out of 
these, only LaS show B1→B2 phase transition at 
around 25GPa in a Silicon oil pressure medium [5]. 
However, no experimental studies of LaSe and 
LaTe are known at present. Hence, we refer to the 
self-consistent Tight Binding Linear Muffin Tin 
Orbital (TBLMTO) method [6]. Further, Lu et al. 
[7] reported the local density approximation (LDA) 
results successfully for electronic structures of LaS 
and SmS. Theoretical investigation of LaX (X= S, 
Se, Te) has been done by two-body interaction 
potential by Varshney et al. [8].  Among divalent 
rare-earth chalcogenides, SmTe shows B1→B2 
phase transition at around 11GPa [4]. The ground 
state configuration of SmTe is determined from 
_________________ 
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total energy calculation using the self-interaction 
local-spin-density approximation[4]. 

Looking at the interesting properties of RETe 
compounds and the fact that no study has been 
done using three body interactions, we thought it 
pertinent to apply three body interaction potential 
(TBIP) approach. The importance of three body 
interactions in potential model to improve results 
has also been emphasized by others like Sims et al. 
[9].  We have employed our three body interaction 
potential (TBIP) approach [10-12] to study high 
pressure behavior. We introduced our three body 
potential model, which includes the long range 
Columbic, three body interaction, short range 
overlap repulsive interaction operative up to second 
neighbor ions within Hafemeister and Flygare 
approach [13]  incorporated with van der Walls 
(vdW) attraction due to dipole-dipole and dipole-
quadrupole interactions effects [14] and also with 
zero point energy effects [15,16]. The inclusion of 
short range (SR), vdW interaction and second 
neighbor ion (SNI) seems essential as their effects 
are considerably important as per prediction of the 
relative stability of crystal structure. The 
importance of inclusion SR, vdW interaction and 
SNI has been established in our earlier work [15]. 
Also we have considered Zero point energy effects, 
which is the lowest possible energy that the 
compound may possess and is the ground state 
energy of the compound.  The energy of the 
compound can be written as (ε = (hυ) / {e (hυ)/ kt − 
1} + (hυ)/2) where, υ, t, and k are the frequency, 
temperature and Boltzman constant of the 
compound, respectively, and h is the Planck 
constant. It is clear from the above expression that 
even at absolute zero the energy of the compound 
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cannot be zero, but at least 1/2 (hυ). This term 
shows a small effect in Gibbs free energy, but 
cannot be ignored completely. The Potential model 
and method of calculation is given in Sec. 2 and 
result and discussion are given in Sec. 3. 

2. Potential model and method of 
calculations 

It is well known that the application of pressure on 
crystals results in change in its volume that leads to 
an increased charge transfer (or three-body 
interaction effects) due to the deformation of the 
overlapping electron shells of the adjacent ions. 
The three body interaction arises during lattice 
vibrations when electron shells of neighboring ions 
overlap. This overlapping leads to the transfer of 
charge which interacts with other charges and 
many body interaction (MBI) takes place, the 
dominant part of which is the three body 
interaction [10-12]. This interaction becomes more 
important due to the decrease in inter ionic spacing 
of the lattice crystal when pressure gets increased 
and when anions experience sufficient overlap. 
Besides, both an enhancement in overlap energy 
and the transferred charge due to the overlap in 
electron shells modify the ionic charge, which in its 
turns modifies the Coulomb energy. The expression 
for the modified Coulomb energy due to three body 
interaction (TBI) is  

Φm(r0) = Φc +  ΦT                                      (1) 

Φm(r0) = [-αMZ2e2/ r] [1+(2n/Z) f(r0)]       (2) 

Here αM is the Madelung constant (1.7476 for 
NaCl and 1.7629 for CsCl structure solids), r0 is the 
equilibrium nearest neighbor (nn) ion separation, n 
is the number of nearest neighbor (nn), and f(r) is 
the TBI parameter which is dependent on the 
nearest neighbor distance (r) as [12]   

f(r)  = f0 exp (-r/ρ)                                  (3) 

These effects have been incorporated in the 
Gibbs free energy (G=U+PV-TS) as a function of 
pressure (P). Here, U is the internal energy, which 
at T= 0 K is equivalent to the lattice energy and S 
is the vibrational entropy at absolute temperature T. 
Since theoretical calculations are done at T= 0 K, 
the Gibbs’s free energy is equivalent to enthalpy. 
At T= 0 K and pressure P, the Gibbs free energies 
for rock salt (B1, real) and CsCl (B2, hypothetical) 
structures are given by.      

GB1
 (r)  = UB1

 (r) + PVB1
                          (4) 

GB2 (r’) = UB2 (r’) + PVB2                                      (5) 

with VB1
 (=2.00 r3) and VB2 (=1.54 r3) as the unit 

cell volumes for B1 and B2 phases, respectively. 
The first terms in the energies (4) and (5) are lattice 
energies for B1 and B2 structures and they are 
expressed as: 

UB1
 (r) =[-(αmz2e2)/r]–[(12αmz e2 f(r))/r] + 6b βij  

exp [(ri + rj – r)/ρ]+ 6b βii exp [(2ri – 1.41r)/ρ] + 6b 
βjj exp [2rj – 1.41r)/ρ]– {(C ijr

-6+Dijr
-8)} + (0.5) h 

〈ω2
〉
1/2

B1                                                                   (6) 

UB2 (r’) =[-(α’ mz2 e2/r’)] – [(16α’ mze2 f(r’))/r’]+ 8b 
βij exp [(ri + rj –r’)/ρ]+ 3bβii  exp [(2ri – 1.154r’)/ρ] 
+ 3b βjj exp [2rj – 1.154 r’)/ρ]-{(C’ ijr’

-6+D’ ijr’
-8)} + 

(0.5) h 〈ω2
〉
1/2

B2                                                       (7) 

Here, ze is the ionic charge, ri (rj) is the ionic 
radii of i(j) ions, ρ is the range parameter, b is the 
hardness parameter, Cij and Dij are the van der 
Walls coefficients from dipole-dipole and dipole-
quadrupole interactions, r(r’) is the inter ionic 
separation for B1 (B2) phases and βij is the Pauling 
coefficients defined as  

1 ji
ij

i j

zz

n n
β = + +                                     (8) 

where, iz ( jz ) and in ( jn ) denote the valence and 

number of electrons in the outermost orbit of 
cations (anions). 

These lattice energies consist of long-range 
Coulomb energy (first term), three body 
interactions corresponding to the nearest neighbor 
separation r (r’) for B1(B2) phases (second term), 
energy due to the overlap repulsion represented by 
Hafemeister and Flygare (HF) type potential (i, j) 
ions (third term) and extended up to the second 
neighbor ions (fourth and fifth terms), vdW 
interaction (sixth term), and the last term indicates 
the zero point effect term in eqns.(6) and (7).  

The effective inter-ionic potential described for 
NaCl [B1] and CsCl [B2] structures contain three 
model parameters [ρ, b, f(r)]: range, hardness and 
the three body interaction. To calculate these 
parameters, we have employed the following 
equilibrium conditions.  

 
[d (U) / dr ]r = r0

  = 0   and  [ d2 U / dr2 ] = 9k r0 BT 

 (9) 
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Now, in the last term 〈ω2
〉
1/2, the mean-square 

frequency relates to the Debye temperature (ΘD) as 
 

〈ω2
〉
1/2 = k ΘD/h                                        (10) 

Here, ΘD can be expressed by well known 
Blackman’s formula described in [16]:  

ΘD = (h/k) √[(5r0Bt)/µ ]                           (11) 

where, Bt and µ  are the bulk modulus and reduced 
mass of the compounds. 

To understand elastic properties of these 
monotellurides, we have calculated second order 
elastic constants (SOEC), (C11 C12 and C44) and 
their pressure derivatives at 0 K, since these elastic 
constants are functions of first and second order 
derivatives of short range potential, so their 
calculation will provide knowledge about the effect 
of short range forces on these materials following 
Jain et al. [17]. The expression for SOE constants is 
given as: 

 
C11 = e2/4r0

4 [- 5.112z {z+12f(r)} +  
               A1 + (A2 + B2)/ 2]+ 9.30z (rdf/dr)]     (12) 
 

C12 =e2/4r0
4 [1.391z {z + 12f(r)} +  

             (A2 – B2)/4 + 9.30z (rdf/dr)]                  (13) 
 

C44 = e2/4r0
4 [2.556z {z+12f(r)} +  

               B1 + (A2 + 3B2)/ 4) ]                            (14) 

In equations (12) to (14), the first term 
represents the long-range Coulomb interaction, the 
second term represents the contribution due to 
TBIP and the remaining ones contribute overlap 
repulsion expressed in terms of the short range 
parameters (A1, B1) and (A2, B2) for the nearest 
neighbor (nn) and next nearest neighbor (nnn) ions. 
These expressions are given in our earlier paper 
[12] .  

3. Result and discussion 

Using the measured values of the equilibrium 
lattice constant (r0)  and  isothermal bulk modulus 
(BT) with K=2 for B1 phase, the model parameters 
thus calculated are given in Table 1 and are used to 
compute the results presented and discussed below. 
For simplicity, we have taken account of only a 
single set [ρ , b, f(r)] in B1–phase and the same set 
is used in B2 phase. The reason for this is that 
during the phase transition from B1→ B2 the atomic 
distribution takes a different arrangement and they 
get arranged in CsCl structure after phase 
transition. Inter-ionic separation changes are 
calculated by the minimizing technique. The 
parameter f(r) is inter-ionic separation (r) 
dependent and it is therefore changed accordingly. 

 
Table 1: Ionic radii ri,  rj , inter ionic separation r0 and range ρ are given in (Ao). 

 
Compounds                 Input parameters             Model parameters 

 ri rj r0 BT (GPa) b(10-19J)  ρ f(r) 

LaTe 1.04c  2.21c 3.215 a 52.8 a 58.21 0.38 0.091 

SmTe 1.19c  2.21c 3.295 b 37.6 b 4.85 0.44 -0.008 

a reference(8)    b reference(4)     c reference(23) 
 

We have followed the technique of 
minimization of UB1

(r) and UB2
(r’) at different 

pressures in order to obtain their  inter ionic 
separations r and r’ corresponding to B1 and B2 
phases. First, we have evaluated the corresponding 
Gibbs free energies GB1

(r) and G B2
(r’) and their 

respective differences ∆G =(GB2
(r) - GB1

(r’)). Then, 

we have plotted ∆G against pressure (P), as shown 
in Fig. 1, for LaTe and SmTe. The phase transition 
pressure (Pt) is the pressure at which ∆G 
approaches zero.  

 

We have also computed the relative volume 
changes V(P)/V(0) and plotted  them against the 
pressure as depicted in Fig. 2 for LaTe and SmTe. 
It is clear from Fig. 2 that phase transition B1→ B2 

occur at about 18 GPa and 12 GPa for LaTe and 
SmTe, respectively, and the calculated volume 
collapses using TBIP model are 8.6% for LaTe and 
9% for SmTe, respectively. These are close to 
experimental values and also given in other works. 
The phase transition pressures and relative volume 
change for SmTe are calculated by two-body 
approach as given by Varshney et al. [8]  for LaTe 
and shown in Table 2. 
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Table 2: Calculated transition pressures and volume collapses. 
 

 
 
 
 
 
 
 

 
a reference(8)       b reference(9)     c reference(4) 

 
 

Furthermore, to test our TBIP model we have 
used the Vinet universal equation of state (EOS) 
for these compounds on the guidelines of  Recio  et  

Variation of Gibbs free energy differences ∆G(KJ/mol) 
against pressure (GPa) for LaTe and SmTe. 

Variation of relative volume with pressure for LaTe, and 
SmTe. 
 
al. [18]. The P-V data can be expressed by the 
equation. 

In H = In B0 + (3/2)(B0’ −1)(1 −x)          (15) 

Here H and x are defined as 

H = Px2/ (3(1 −x)     and    x = V/V0            (16) 

The curve representing B1 (B2) phases 
computed from above equation (14) are shown in 
thick (thin) lines in Fig. 4. We have fitted the 
VEOS to our TBIP P-V data. In this way, we 
carried out a comparison not with the experiments, 
but simply created a sort of consistency of the 
empirical behavior in many real solids.  

Variation of C44/ BT with pressure for LaTe, and SmTe. 
 

Since the study of elastic constant and their 
combinations is important to understand the elastic 
properties and their inter-atomic behavior, we have 
computed the second-order elastic constants 
(SOEC) and their combinations, which are shown 
in Table-III. The quantities C44 and CS are the shear 
and tetragonal moduli of a Cubic crystal. It is 
necessary for lattice to satisfy the Born criterion for 
mechanically stable state. For this purpose, the 
elastic energy density must be a positive definite 
quadratic function of the strain. In order to fulfill 
the above criterion, the principal minor (eigen 
values) of the elastic constant matrix should all be 
positive.  
 
 

 
Comp. 

Transition Transition Pressure(GPa) Volume Collapes 
Present 
TBIP  

Exp. and 
other 

Two-
body 

Present Exp. and 
other 

Two-
body 

LaTe B1  → B2 18 
 

16.5a      (16.8)b 8.6% (8.2%)a  (7.2%)b 

SmTe B1  → B2 12 (11)c   13.5 9% (9.1%)c  8.7% 
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Thick and thin solid curves represent Vinet equation of 
state (VEOS) (a) for LaTe (b) for SmTe. 
 

 
Since the tetragonal modulus CS = (C11 – C12)/2 for 
PbTe and SnTe increases linearly with pressure, the 
pressure-induced change in C44 decreases slightly 
for PbTe and SnTe. Also, the pressure dependence 
of the corresponding stiffness 1/3 (C11 + C12 + 
2C44) is linear for PbTe and SnTe. Hence TBIP 
confirmed that the features of LaTe and SmTe 
show the same trends as reported for pressure 
dependence elastic stiffness for PbTe and SnTe 
possessing the NaCl structure [19]. Vukcevich [20] 

also stated the high pressure stability criterion for 
ionic crystal, the stable phase of a crystal is one in 
which the shear elastic constant C44

 is non-zero (for 
mechanical stability) and which has the lowest 
potential energy among the mechanically stable 
lattices. Thus the stability of NaCl-type structure in 
terms of elastic constants should satisfy the 
following conditions  

 
BT = 1/3 (C11 + 2C12) > 0,    C44 > 0   and  

 
CS = (C11 – C12)/2 > 0                              (17) 

 
The estimated shear moduli are C44=16.2 GPa 

and C44= 9.8 GPa and tetragonal moduli are CS = 
55.5 and CS =39.9GPa for LaTe and SmTe, which 
are well suited for the above elastic stability 
criterion for RETe compounds. From Table 3, our 
estimated C44 for LaTe and SmTe are positive and 
hence the above stability criterion is satisfied for 
ionic crystal. Musgrave and Pople [21]  pointed out 
that if either C44 or CS = (C11 – C12)/2 goes to zero 
as the pressure is increased, then the structure 
becomes unstable and the crystal transforms by a 
spontaneous shear. Also, in the case of B1-
structure, C44 decreases up to Pt but the phase 
transition to the B2 – structure takes place before 
the C44 reaches zero. Demarest et al. [22] proposed 
a slight modification of the Born stability criterion 
that a phase transition takes place when the ratio 
C44 / BT reaches a critical value in the 
neighborhood of 0.14 and 0.2. Along the same 
guide lines, we have obtained exactly the same 
trends from TBIP that are tabulated in Table 3 and 
shown in Fig. 3. The deviation from Cauchy 
relations between second order elastic constants as 
well as the third order elastic constants can be more 
significantly expressed in terms of TBIP approach.  

 
 

Table 3: Calculated elastic constants and their combinations (GPa). 
 

 
Finally, we have noticed that during the 

crystallographic transition from NaCl to CsCl, the 
volume discontinuity in pressure-volume phase 
diagram identifies the same trends as the 
experimental data and these results are well fitted 

with Vinet (EOS). In order to judge the stability of 
these compounds, we have computed elastic 
constants and plotted C44/BT with different 
pressures and hence the trends shown from TBIP 
are consistent with the requisites of first-order 

Comp. 

 

C11 

 

C12 

 

C44 

 

C44 /BT  

 

CS = ½(C11 – C12)        CL = ½ (C11+C12 + 2C44)   

LaTe 135 24 16.2 0.294 55.5  95.7 

SmTe 92.4 12.4 9.8 0.14              39.9 57.6 
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phase transition. On the basis of above work, it is 
concluded that the TBIP approach is adequately 
suitable for the prediction of B1→B2 phase 
transition pressures and associated volume 
collapses in RETe compounds. 
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