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In this paper, we investigate an inflationary cosmological model of Bianchi type V filled with a perfect fluid within

the framework of scale-covariant theory of gravity. Exact solutions of the field equations are obtained by using an

exponential form of the average scale factor, derived by applying a special law of variation of Hubble parameter. The

interesting feature of the model is that it has no finite singularity. The anisotropic cosmological model is accelerating

with uniform exponential expansion and tends to isotropy for large time. The physical and kinematical behaviors of

the model are discussed.

1. Introduction

Inflation, the stage of accelerated expansion of
the universe, nowadays is attracting the atten-
tion of many cosmologists. Guth [1] first pro-
posed inflationary model in the context of grand
unified theory, which has been accepted soon as a
model of early universe. Einstein’s general relativ-
ity originally constructed as a theory of gravita-
tion. Owing to the scaling behavior exhibited in
high-energy particle scattering experiments, there
has been considerable interest in manifestly scale-
invariant theory. Such theories are considered valid
only in the limit of high energies or vanishing rest
masses. It is held that in elementary particle theo-
ries, rest masses are considered constants and that
scale invariance is generally valid only when the
constant rest-mass condition is relaxed. By asso-
ciating the mathematical operation of scale trans-
formation with the physics of using different dy-
namical systems to measure space time distances,
Canuto et al. [2] formulated a scale-covariant the-
ory of gravitation, corresponding to each dynam-
ical system of units is a gauge condition that de-
termines the otherwise arbitrary gauge function.
For gravitational units, they have chosen the gauge
condition so that the standard Einstein’s equations
are recovered. Assuming atomic units, derivable
form atomic dynamics, to be distinct from gravi-
tational units, they imposed different gauge con-
dition. It is suggested that Dirac’s large number
hypothesis be used for the determination of this
condition so that the gravitational phenomenon
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can be described in atomic units. This theory is
a viable alternative to general relativity which al-
lows a natural interpretation of the possible vari-
ation of the gravitational constant G [3,4]. Bee-
sham [5] discussed power asymptotic singularities
in the scale-covariant theory of gravitation with
special attention to the Friedmann model and Kas-
ner model, and has generalized the corresponding
relativistic results. Reddy et al. [6] have presented
an LRS Bianchi type-I cosmological model with a
negative constant deceleration parameter. Reddy
et al. [7] considered Kaluza-Klein space-time in the
presence of a perfect fluid and have obtained a cos-
mological model in five dimensions with negative
deceleration parameter by applying a special law
of variation of hubble parameter. Shri Ram et al.
[8] have presented spatially homogeneous Bianchi
type V cosmological model with power law expan-
sion in scale-covariant theory of gravitation.

In this paper, we obtain a spatially homogeneous
Bianchi type V space-time in the presence of a per-
fect fluid with exponential form of the average scale
factor within the framework of scale-covariant the-
ory of gravity. We present the metric and field
equations and derive the exponential form of the
average scale factor by applying a special law of
variation of Hubble’s parameter.Then we obtain
exact solutions of the field equations. The detailed
study of physical and kinematical properties of ac-
celerated expanding cosmological model has been
carried out.
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2. Metric and Field Equations

Canuto et al. [2] formulated the scale-covariant
theory of gravity by associating the mathemat-
ical operation of scale transformation with the
physics of using different dynamical systems to
measure space-time distances. In this theory, Ein-
stein’s field equations are valid in gravitational
units whereas physical quantities are measured in
atomic units. The metric tensors in the two sys-
tems of units are related by the conformal trans-
formation

gµν = φ2gµν (1)

Where the gauge function φ is a function of co-
ordinates. A bar denotes gravitational units and
unbarred denotes atomic units. Using Eqn. (1),
Canuto et al. [2] transformed the usual Einstein’s
field equations into

Rµν −
1

2
Rgµν + fµν(φ) = −8πG(φ)Tµν + Λ(φ)gµν

(2)
Where

φ2fµν = 2φφ;µν−4φ,µφ,ν −gµν(φφ
,µ
;µ−φ,µφ,ν) (3)

Here semicolon denotes covariant differentiation
and comma denotes ordinary differentiation. For
a perfect fluid distribution, the energy momentum
tensor Tµν is given by

Tµν = (ρ+ p)vµvν − pgµν (4)

Where, ρ is the energy-density of matter, p the
isotropic pressure vµ is the four velocity vector sat-
isfying vµvµ = 1.

The general metric for a spatially homogeneous
and anisotropic Bianchi type V metric is of the
form

ds2 = dt2 −A2(t)dx2 − e2mx[B2(t)dy2 +C2(t)dz2]
(5)

Where, A, B and C are scale functions and m is a
constant.

In comoving coordinates, the field Eqns. (2)-
(4), for the metric in Eqn. (5), explicitly give the
following set of equations
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The energy conservation equation, which is a con-
sequence of the field equations, is given by

ρ̇+ (ρ+ p)vµ;µ = −ρ
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For the metric in Eqn. (5), this equation reduces
to
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An overdot denotes ordinary differentiation with
respect to cosmic time t.

We now define certain physical and kinemati-
cal parameters. For the metric (5), the expansion
scalar (θ), the shear scaler (σ) are given by
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The generalized mean Hubble’s parameter H is de-
fined by

H =
1

3
(H1 +H2 +H3) (15)
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Where, H1 = Ȧ
A
, H2 = Ḃ

B
and H3 = Ċ

C
are direc-

tional Hubble’s parameters in the directions of x,
y and z respectively. The volume scalar V and the
average factor a are defined as

V = a3 = ABC (16)

From Eqns. (13), (15) and (16), we obtain
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An important observational quantity is the decel-
eration parameter (DP) q, which is defined as

q = −
aä

ȧ2
(18)

The sign of q indicates whether the model inflates
or not. The positive sign corresponds to standard
decelerating model whereas the negative sign indi-
cates inflation.

From Eqns. (6)-(9), we obtain the expressions
for energy density and pressure in terms of kine-
matical parameters as

8πGρ = 3H2 − σ2 −
3m2
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Integration of Eqn. (10) yields

A2 = BC (21)

by absorbing the integration constant in the func-
tion B or C.

3. Solution of Field Equations

We follow the technique used by Saha and Rikhvit-
sky [9] to solve the field Eqns. (6)-(9) in quadra-
ture forms. Subtracting Eqn.(7) from (6), Eqn. (8)
from (7) and Eqn. (8) from Eqn. (6), respectively,
and integrating the results, we obtain

B

A
= d1 exp

(

k1

∫
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)

(22)

C
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C
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(24)

Where, d
′s and k

′s are constants of integration.
After straightforward calculations, the metric func-
tions A, B and C can be obtained [8] as

A(t) = a (25)

B(t) = ba exp

(

X

∫
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a3φ2

)

(26)

C(t) = b−1a exp

(

−X

∫
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)

(27)

Where, b and X are again arbitrary constants.
From the above equations we can determine the

scale functions A, B and C if the average scale fac-
tor a(t) and the gauge function φ are given func-
tions of cosmic time t. For further simplification,
we assume that the gauge φ varies inversely pro-
portional to the average scale factor i.e.,

φ =
k

a
(28)

k being a constant. Then Eqns. (25), (26) and
(27) reduce to

A(t) = a (29)
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(31)

Now, to derive an appropriate ansatz for the spe-
cial law of variation of Hubble’s parameter that
yields a constant value of DP. Here we make an as-
sumption that the Hubble parameter H is related
to the average scale factor by the relation

H = la−n (32)

Where, l > 0 and n ≥ 0 are constants. Such
type of relation has already been considered by
Berman [10], Berman and Gomide [11] for solving
field equations in FRW models. It may be noted
that through the current observations of SNe Ia
and CMB favour accelerating models, but they do
not altogether rule out the decelerating ones, which
is consistent also with these observations.



The African Review of Physics (2014) 9:0039 308

From Eqns. (17) and (32), we obtain

ȧ = la−n+1 (33)

ä = −l2(n− 1)a−2n+1 (34)

From Eqns.(18), (33) and (34), we find that

q = n− 1 (35)

Thus, we see that q is constant. From Eqn. (33),
we obtain

a = (nlt+ c1)
1

n , n 6= 0 (36)

a = c2 exp(lt), n = 0 (37)

Where, c1 and c2 are constants of integration.
Without loss of any generality, we take c1 = 0 and
c2 = 1. Shri Ram et al. [8] have presented a de-
celerated expanding cosmological model of Bianchi
type V filled with perfect fluid in scale covariant
theory of gravitation by using power law form of
the average scale factor a(t) given by Eqn. (36).

Eqn. (37) gives the exponential form of the av-
erage scale factor. Inserting Eqn. (37) into the
integrals on right side of Eqns. (29)-(31) and then
integrating, we obtain the solution for the scale
factors as

A(t) = elt (38)

B(t) = belt exp

(

−X

lk2
e−lt

)

(39)

C(t) = b−1elt exp

(

X

lk2
e−lt

)

(40)

The solution for the gauge function φ is given by

φ = ke−lt (41)

The expansion scalar θ and shear scalar σ has val-
ues given by

θ = 3l (42)

σ2 =
2X2

k4
e−2lt (43)

The directional Hubble’s parameters and average
Hubble parameter are given by as follows

H1 = l (44)

H2 = l +
X

k2
e−lt (45)

H3 = l −
X

k2
e−lt (46)

H = l (47)

From Eqns. (19)-(20), we can find the expression
for energy density and pressure involving the time
varying gravitational constant G. We recall that
in most of the time varying G cosmologies, G is
a decreasing function of time. The possibility of
an increasing G has also been discussed by Levit
[12]. Beesham [13] has discussed the passibility
of a creation field with G proportional to a power
function t. Sistero [14] presented exact solutions
for zero curvature Robertson-Walker cosmological
models with G proportional to a power function of
the average scale factor a. Here we obtain a physi-
cally realistic model of the universe by assuming a
time-varying G of the form

G = λa2 = λe2lt (48)

Where λ is a constant of proportionality. Using
Eqn.(48) into Eqns. (19)-(20), we obtain energy
density and pressure given by

8πρ =
2l2

λ
e−2lt −

1

λ

(

2X2

k4
+ 3m2

)

e−4lt (49)
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FIG. 1: Variation of energy density ρ with time t.
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FIG. 2: Variation of pressure with time t.

As q = −1, the model presented by a set of in-
flationary solutions and which is in the phase of
accelerated expansion. Thus, the model is consis-
tent with the recent observations of Suopernovae
Ia requiring the present universe to be accelerat-
ing [15,16]. The behaviors of energy density and
pressure are shown in Figs. 1 and 2, respectively.
We observe that energy density is positive and the
pressure is negative for all finite time which corre-
sponds to accelerated expansion of the universe.

4. Physical and Kinematical Behaviors of the

Model

We now discuss the physical and kinematical be-
haviors of the cosmological model. We observe that
spatial volume V and three scale factors are con-
stants at t = 0. At this point, each of the following
have constant values: the energy density, pressure,
expansion scalar, shear scalar and gauge function.
This means that model has no finite singularity at
t = 0. The model is well behaved for −∞ < t < ∞.
This shows that the universe is infinitely old and
has exponential inflationary phase. The directional
Hubble parameters are time dependent while the
mean Hubble parameter is constant. The expan-
sion scalar is constant throughout the time of evo-
lution right from the beginning. The physical and
kinematical quantities are all decreasing functions
of time. As t → ∞ , the spatial volume is infi-
nite. The energy density and pressure become zero.
Thus, the model gives an empty space for large
time. Since σ

θ
→ 0 as t → ∞ the model is isotropic

for large time. Thus, the universe starts expanding
from a big bang singularities in the infinite past
and expands exponentially with constant rate of
expansion and finally it approaches to isotropy for
large time.

5. Conclusion

We have studied the spatially homogeneous and
anisotropic Bianchi type V cosmological model
with negative deceleration parameter in scale-
covariant theory of gravitation in the presence of
a perfect fluid. We have applied a special law of
variation for Hubble’s parameter to derive an expo-
nential form of the average scale factor that yields
the deceleration parameter equal to -1. Then us-
ing the exponential form of the average scale factor
we have obtained the solutions of the scale factors.
The corresponding cosmological models represents
an exponentially expanding universe having singu-
larity in the infinite past (i.e., t → −∞). The scale
factor admit constant values at early times of the
universe (t → 0), afterwards scale factors starts in-
creasing with the increase of time without showing
any type of initial singularity and finally diverge to
infinity as (t → ∞). This shows that the universe
expands exponentially approaching to infinite vol-
ume.

The expansion scalar for these scale factors ex-
hibits the constant value which is θ = 3l. This
shows uniform exponential expansion for all time
i.e., the universe expands homogeneously. Since
H = l, the mean Hubble parameter is constant,
whereas directional Hubble parameters are dynam-
ical. The deceleration parameter q = −1 implies
accelerating expansion of the universe as one can
expect for exponential volumetric expansion. The
matter pressure and energy density are monoton-
ically decreasing function of time. The model is
consistent with the present observations. Perlmut-
ter et al. [15] and Riess et al. [16] have proved
the decelerating parameter of the universe in the
range −1 ≤ q ≤ 0, and the present day universe is
undergoing accelerated expansion.
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