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Using the technique of integration by parts in functional integrals, we are able to derive the perturbation series of the 
Green function of �� theory. The advantage of this method in deriving the perturbation series is the fact that we obtained a 
closed expression for the remainder. This can be very useful in estimating the contribution of higher order diagrams in Green 
functions.  
 
 

1.     Introduction 

Feynman’s path integrals [1,2] or functional 
integrals are an important tool in physics. This 
formalism has been successfully applied in the 
quantization procedure of all type of systems, from 
the simple quantum mechanical problem of a single 
particle moving in one dimension to more 
complicated objects such as fields and strings [3]. 
The use of functional integral is one of the most 
powerful techniques in quantizing field theories. 
In this formalism, symmetries of physical systems 
are easily treated and applied to various problems 
[4]. The parallel application of this formalism in 
both high energy and condensed matter physics 
makes it an important general tool [5]. The 
analytical and numerical approaches to path 
integrals are by now central to the development of 
many other areas of physics, chemistry and 
materials science, as well as to mathematics and 
finance [6]. Nevertheless, it has the drawback of 
being very difficult to carry out calculations and 
its mathematical foundation is not yet completely 
clarified [7,8]. The weak perturbation theory 
generally proves to be insufficient to extract all the 
physics. A well-known case is given by quantum 
chromodynamics, which due to its strength of the 
coupling constant at low energies makes known 
perturbation techniques useless and demanding the 
need for non-perturbative solutions.  

One of the ideas to surmount the weakness of 
perturbative method of calculation was proposed in 
1977, when Lipatov published his method [9] as a 
tool for calculating high-order terms in perturbation 
series and making quantitative estimates for its 
divergence. The key to Lipatov’s method is to 
express the  ���	 term of the perturbation series as a 
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functional integral and use a saddle point 
approximation (with respect to the field and the 
coupling constant) to give an estimate of it.  

We present here how we can use the technique 
of integration by parts in functional integral for 
the derivation of the perturbation series of the 
Green function of ��  theory. This allowed us to 
obtain a closed expression for the remainder, which 
can be subject to non perturbative estimation. 

2.     Derivation of the Perturbation Series 

In the following, we will show how we can derive 
the perturbation series of the propagator in a 
simple way using the method of integration by 
part. We will illustrate this technique on �� theory 
in Euclidean space.   

The connected propagator is given by:  
 ��	, 	�� = �

� ���	��	���	�����         (1) 

 
Where the normalization factor N is  
 

� = ������ 

 
and S is the action 
 � = �

����. ∆. � + �
�!���                 (2) 

 ∆ is the quadratic term in the action. 
 ����	� �	�  −12��. ∆. �$ = 

−∆%& . ��'�		�	�  −12��. ∆. �$ 

(3) 
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In Eqn. (3), the integration with respect to y of the 
second member is to be understood. We can write 	
��	�		�	�  −12��. ∆. �$ =	

−∆%&�� 	.		 ����'� �	�  −12��. ∆. �$	
(4) 

 
With this trick, we can write  
 

��	, 	�� = − 1�	∆%&�� 

. ���	 ( ����'� �	�  −12��. ∆. �$)��	�� 
�	�  − *2.4!���$ 

(5) 
 

We can now integrate by parts with respect to 
ϕ (x). The boundary term resulting from this 
integration by parts vanishes because of the 
exponential of the action, which vanishes for large 
field. We get  
 

��	, 	�� = 1� ∆%&�� 

. ��� 	�	�  − 12��. ∆. �$ 

����'� (��	��	�	�  − *2.4!���$) 

 (6) 
 

We can now do the derivation in this integral and it 
yields two terms  
 ��	, 	�� = ∆���	 − 	�� 
 

	−	 *12 1�	∆%&��	. ���	�,�'���	�� ��� 

 (7) 
 

The first term is nothing but the free 
propagator. It is the first term of perturbation 
series. If we make the same manipulation on the 
second term we will get the other terms of 
perturbation series. 

We write for this  

 

∆%&��	. ���	�,�'���	�� ��� = −∆%&��∆%-&-��  

. ���	 ( ����'�� �	�  −12��. ∆. �$)�,�'� 
�	�  − *2.4!���$ 

  (8) 
 

We can now use integration by parts. But before 
that we need to use first integration by parts to get 
the second term of the perturbation series because 
we have now three fields in the functional integral. 
We obtain finally   
 

��	, 	�� = ∆���	 − 	�� − 	*4	∆%&��	. ∆%-&�� 	. ∆&&�� 

 

+ 1� [	 *�12� ∆%&��∆%-&-�� . ���	�,�'� �,�'����� 

 

+	 *�12� ∆%&��. ∆%-&�� . ∆&&-�� ���	��'��,�'�����] 
 (9) 

3.     The Remainder of the Perturbation Series 

The first term in Eqn. (8) is the free propagator and 
the second term is the tadpole term of perturbation 
series. The term between brackets is the remainder of 
the series of the second order. It can be expressed in 
terms of two Green functions of sixth and fourth 
orders, as can be seen from Eqn. (9).  
 

��	, 	�� = ∆���	 − 	�� − *4∆%&��	. ∆%-&�� 	. ∆&&�� 

 

+[	 *�12� ∆%&��∆%-&-�� . �0�', ', ', '�, '�, '��			 
 

				+	 *�12� ∆%&��. ∆%-&�� . ∆&&-�� . ���', '�, '�, '��] 
(10) 

 
This can be represented schematically by the 
following diagram 
 

 
 
 
  

 

= + + + 
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This diagram tells us that Feynman diagrams that 
represent the remainder can be divided in two classes. 
Any diagram of the first class has always a sub-
diagram of the Green function of the sixth order and 
any diagram of the second class has always a sub-
diagram of the Green function of the fourth order. 

Since the perturbation terms are divergent we need 
to use the renormalization method. We have to 
introduce some regularization scheme in calculating 
the perturbation terms, and we have to add counter-
terms to the action. The remainder has to be calculated 
with the action containing these counter-terms. 

Eqn. (10) can be transformed to a Dyson-
Schwinger type equation relating the two-point Green 
function to Green functions of sixth and fourth order. 
This can be done at any order. This can be useful in 
non-perturbative calculation. We can also use directly 
the functional expression for the remainder in Eqn. (9) 
for non-perturbative estimate using, for example, a 
saddle point approximation as in the Lipatov method 
[9]. The advantage of formulae in Eqn. (10), even 
though the remainder is still written as a functional 
integral, is the fact that we isolate the perturbative part 
of the Green function. This can be very useful for 
theories like QCD, where the Green function at short 
distances is dominated by perturbative terms, and for 
long distance it is dominated by non-perturbative 
terms (the remainder). Calculations in this direction 
are in progress. 

4.     Conclusion 

We derived the perturbation series of Green functions 
in a simple way using integration by parts. This 
allowed us to express the remainder in a closed form, 
which can be the starting point for non-perturbative 
estimation. A saddle point approximation is suitable 
to estimate the remainder as in the Lipatov method. 
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