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The mixed spin-1 and spin-3/2 BC Ising ferromagnetic system is studied on the two-fold Cayley tree by means

of the exact recursion relations. The exact expressions for the magnetization, the quadripolar moment, the Curie

temperature, and the free energy are found, and the phase diagrams are constructed on the Cayley tree with the

coordination numbers q = 3, 4 and 6 for various values of the single-ion anisotropy constants ∆1 = D1/J for spin-1

and ∆2 = D2/J for spin-3/2. The existence of tricritical point is investigated for different values of the coordination

numbers q and the single-ion anisotropy values. Phase diagrams in the plan (kT/J,∆1) are constructed when first

∆1 = ∆2 and second ∆1 6= ∆2 for selected values of ∆2. The thermal dependence of the magnetization is also studied.

The results found are compared with those of other approximate methods.

1. Introduction

Mixed Ising spin systems have attracted much in-
terest over the past few years from both theoretical
and experimental points of view. This is due to
their relevance in studying molecular-based mag-
netic materials which exhibit ferromagnetic prop-
erties [1] and also to their technological applica-
tions in the domain of thermomagnetic record-
ing [2]. Mixed Ising spin models appear simpler
in the description of a system that shows the tri-
critical point (TCP) behaviour. Moreover, they
are useful to study the effect of inhomogeneities
on the phase diagram of Ising systems. When de-
fined on hierarchical graphs, such as the Bethe lat-
tice or the Cayley tree, interesting statistical prop-
erties are expected. The properties of such Ising
systems have been studied by well-known methods
of equilibrium statistical mechanics. One of the
earliest, simplest and the most extensively studied
mixed-spin Ising model is the spin-1/2 and spin-1
mixed system. This system has been studied us-
ing the renormalization-group technique [3], high-
temperature series expansions [4], the free-fermion
approximation [5], the recursion method [6], the
Bethe-Peierls approximation [7], the framework of
the effective-field theory [8, 9], the mean-field ap-
proximation [10, 11], the finite cluster approxima-
tion [12], the Monte-Carlo simulation [13, 14], the
mean-field renormalization-group technique [15],
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a numerical transfert matrix study [16] and the
cluster method in pair-approximation [17]. Even
though most of these studies have focused on the
mixed spin-1/2 and spin-s (s > 1/2) Ising systems,
the mixed-spin Ising systems consisting of higher
spins are not without interest. Indeed, several the-
oretical studies of the two-sublattices mixed spin-
1 and spin-3/2 Ising models have been reported
based on the effective-field theory with correlations
that correctly incorporate the single-site kinematic
relations of the spin operators on a honeycomb
lattice [18], on a square lattice [19], on the sim-
ple cubic lattice [20], within the mean-field theory
based on the Bogoliubov inequality for Gibbs free
energy [21], and by the means of recursion relations
on the Bethe lattice [22, 23]. Albayrak studied the
mixed spin-1 and spin-3/2 on the Bethe lattice us-
ing the exact recursion equations and found a tri-
critical point for some values of the coordination
number q [22]. The presence of lattice anisotropy
in the model is interesting since it might induce a
profound influence on the molecular magnetism of
this system. More recently, Cesur Ekiz [23] used
the same technique to investigate the same model
of mixed spin on the Bethe lattice in the ferro-
magnetic case and obtained interesting results like
the existence of compensation temperatures, which
have great technological importance.

The aim of this paper is to present an exact for-
mulation of the mixed spin-1 and spin-3/2 Ising
ferromagnetic system as a non-linear discrete two-
dimensional mapping on the two-fold Cayley tree
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using the recursion relations, to obtain the phase
diagrams for various values of single ion-anisotropy
constants or crystal field interaction ∆1 for the
spin-1 and ∆2 for the spin-3/2, and to clarify the
effects of the crystal field interaction on the mag-
netic properties of the system. The existence of
tricritical points are investigated depending on the
values of the single-ion anisotropy constants and
the coordination numbers. The exact expressions
for the magnetization, the quadripolar moment
parameter, the free energy and the second-order
phase transition temperature are obtained in terms
of the recursion relations. The obtained phase di-
agrams are compared with the results of the above
mentioned references for spin-1 and spin-3/2 Ising
systems.

The outline of this work is as follows. In Sec-
tion 2, the formulation of the problem is given and
the exact expressions for dipole and quadripolar
moment parameters are obtained. The exact ex-
pressions for the Curie or the second-order transi-
tion temperature and the free energy are obtained
and the phase diagrams are presented in Section 3.
In Section 4 a summary and dicussion of the phase
diagrams are given.

2. The Formulation of the Problem

2.1. Definition of the model

The two-fold Cayley tree is constructed as follows.
First, we considered two points O and O′ as the
central points of the graph (see Fig.1) [24]. The
“first shell” of the graph is obtained by construct-
ing q points that connect to each central point. For
the central point O, one gets the “first left shell”
whereas for O′, one obtains the first opposite shell
named “the first right shell”. The graph grows fur-
ther from these q points by connection to (q − 1)
new points and so on. At the end, one has a two-
fold Cayley tree with a frontier shell (absent in the
Bethe lattice) that has closed loops. The two-fold
Cayley tree consists of two sublattices A and B.

Discrete spin values are put on the Cayley tree
with spin-1 on the sublattice A (variable s) and
spin-3/2 on sublattice B (variable σ). Then, si =
±1, 0 and σj = ±3/2,±1/2 are the possible spin
variables on sites of the two sublattices.

The interaction hamiltonian of this mixed spin
system is defined as:

H = −J
∑

i,j

siσj − D1

∑

i

s2
i − D2

∑

j

σ2
j (1)

Where, J > 0 is the ferromagnetic nearest-

Figure 1: A two-fold Cayley tree for coordination q = 3
consisting of two different types of magnetic atoms A
and B with spin variables si and σj , respectively.

neighbour exchange coupling constant, D1 and D2

are the crystal-field or lattice anisotropy for spin-1
and spin-3/2, respectively. In this equation, the
first sum runs over nearest-neighbour spin pairs,
the second over sites of the sublattice A and the
third over sites of the second sublattice B.

The partition function of this mixed spin system
is given by:

Z =
∑

i,j

e−βH

=
∑

i,j

e−β(−J
P

i,j siσj−D1

P

i s2

i−D2

P

i σ2

i ) (2)

where, β = 1/kT , with k the Boltzmann constant
and T the temperature. The magnetizations are
computed from some exact recursion relations that
we treated by means of an iteration procedure. In
fact, the graph splits into q disconnected pieces
when cut at the central points O and O′. There-
fore, the partition function can be written as fol-
lows:

Z =
∑

s0

∑

s0′

e−βD1(s
2

0
+s2

0′
)gq

n(s0, s0′) (3)

where s0 and s0′ are the central spin values and
gn(s0, s0′) denotes the partition of an individual
branch. Its explicit expression is:

gn(s0, s0′) =
∑

σ1

∑

σ1′

exp[β(Js0σ1 + Js0′σ1′ − D2(σ
2
1 + σ2

1′)

+J
∑

i,j

siσj + D1

∑

i

s2
i + D2

∑

j

σ2
j )] (4)
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Each branch can be cut on the sites σ1 or σ1′ ,
which are the nearest-neighbour to the central
point, respectively. Thus, one gets the following re-
currence relations for gn(s0, s0′) and gn−1(σ1, σ1′):

gn(s0, s0′) =
∑

σ1

∑

σ1′

exp[β(Js0σ1 + Js0′σ1′

−D2(σ
2
1 + σ2

1′))]g
q−1
n−1(σ1, σ1′) (5)

and

gn−1(σ1, σ1′) =
∑

s2

∑

s2′

exp[β(Js2σ1 + Js2′σ1′

−D1(s
2
2 + s2

2′))]g
q−1
n−2(s2, s2′) (6)

Thus, for gn(1, 1) and gn−1(
3
2 , 3

2 ) as examples, the
explicit expressions read:

gn−1(
3

2
,
3

2
) = eβ(3J+2D1)gq−1

n−2(1, 1)

+2eβ( 3J
2

+D1)gq−1
n−2(1, 0)

+2e(2βD1)gq−1
n−2(1,−1)

+2eβ(− 3J
2

+D1)gq−1
n−2(0,−1)

+eβ(−3J+2D1)gq−1
n−2(−1,−1)

+gq−1
n−2(0, 0) (7)

gn(1, 1) = eβ(3J+
9D2

2
)gq−1

n−1(
3

2
,
3

2
)

+2e(
9βD2

2
)gq−1

n−1(
3

2
,−

3

2
)

+2eβ(2J+
5D2

2
)gq−1

n−1(
3

2
,
1

2
)

+2eβ(J+
5D2

2
)gq−1

n−1(
3

2
,−

1

2
)

+eβ(−3J+
9D2

2
)gq−1

n−1(−
3

2
,−

3

2
)

+2eβ(−J+
5D2

2
)gq−1

n−1(−
3

2
,
1

2
)

+2eβ(−2J+
5D2

2
)gq−1

n−1(−
3

2
,−

1

2
)

+eβ(J+
D2

2
)gq−1

n−1(
1

2
,
1

2
)

+2e(
βD2

2
)gq−1

n−1(
1

2
,−

1

2
)

+eβ(−J+
D2

2
)gq−1

n−1(−
1

2
,−

1

2
) (8)

2.2. Definition of new variables

The number of recursion relations is considerably
reduced due to the symmetry of the Cayley tree

around the frontier shell. This symmetry induces
symmetric relations for gn and gn−1 as follows:

gn(s0, s0′) = gn(s0′ , s0) (9)

gn−1(σ1, σ1′) = gn−1(σ1′ , σ1) (10)

New variables hn(s0, s0′) and hn−1(σ1, σ1′) are in-
troduced by renormalizing gn and gn−1 by gn(0, 0)
and gn−1(−

1
2 ,− 1

2 ), respectively. In the following
we consider:

Xn = hn(1, 1) ; Yn = hn(1, 0) ;

Zn = hn(1,−1) ; Un = hn(−1,−1)

wn = hn(0,−1) ; An−1 = hn−1(
3

2
,
3

2
) ;

Bn−1 = hn−1(
3

2
,−

3

2
)

Cn−1 = hn−1(
3

2
,
1

2
) ; Dn−1 = hn−1(

3

2
,−

1

2
) ;

En−1 = hn−1(−
3

2
,−

3

2
) ; Fn−1 = hn−1(−

3

2
,
1

2
)

Gn−1 = hn−1(−
3

2
,−

1

2
) ; Hn−1 = hn−1(

1

2
,
1

2
) ;

In−1 = hn−1(
1

2
,−

1

2
)

2.3. Expressions of the sublattice

magnetizations

By definition, the average value of a physical vari-
able A inside a spin box Λ with specified boundary
conditions (b.c) is formally written as:

〈A〉b.cΛ = Zb.c
Λ

−1 ∑

σ∈ΩΛ

Ae−βHΛ(σ/b.c) (11)

where Zb.c
Λ is the partition function, σ an element

of the space configuration ΩΛ. Thus, the expres-
sions of the sublattice magnetizations MA and MB

and the averaged total magnetization per site M
are defined respectively by:

MA = 〈s0〉

= 〈s0′〉

= Z−1
A

∑

s0

∑

s0′

s0e
−βD1(s

2

0
+s2

0′
)gq

n(s0, s0′)

(12)
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MB = 〈σ1〉

= 〈σ1′〉

= Z−1
B

∑

σ1

∑

σ1′

σ1e
−βD2(σ

2

1
+σ2

1′
)gq

n−1(σ1, σ1′)

(13)

M =
1

2
(MA + MB) (14)

where

ZA =
∑

s0

∑

s0′

e−βD1(s
2

0
+s2

0′
)gq

n(s0, s0′) (15)

ZB =
∑

σ1

∑

σ1′

e−βD2(σ
2

1
+σ2

1′
)gq

n−1(σ1, σ1′) (16)

By setting MA =
M

′

A

M0

A

and MB =
M

′

B

M0

B

one gets the

explicit expressions:

M0
A = e(2βD1)(Xq

n + 2Zq
n + U q

n)

+2e(βD1)(Y q
n + W q

n) + 1

M
′

A = e(2βD1)(Xq
n − U q

n) + e(βD1)(Y q
n − W q

n) + 1

M0
B = 2e(4βD2)(Aq

n−1 + 2Bq
n−1 + Eq

n−1)

+4e(2βD2)(Cq
n−1 + Dq

n−1 + F q
n−1 + Gq

n−1)

+2(Hq
n−1 + 2Iq

n−1 + 1)

M
′

B = 3e(4βD2)(Aq
n−1 − Eq

n−1)

+4e(2βD2)(Cq
n−1 − Gq

n−1)

+2e(2βD2)(Dq
n−1 − F q

n−1) + Hq
n−1 − 1

2.4. Formulation of the critical temperatures

By increasing the temperature and keeping fixed
all other parameters of the model, SOT tempera-
ture can be defined. It is the temperature at which
the sublattice magnetizations go continuously and

simultaneously to zero without any anomalous be-
haviour in the Helmoltz free energy F . This so-
called Curie Temperature Tc, separates the ferro-
magnetic order phase from the disordered param-
agnatic phase. Some features of the system at Tc

may be obtained by setting M
′

A and M
′

B to zero,
i.e., by solving the system of equations: Xn = Un,
Yn = Wn, An−1 = En−1, Cn−1 = Gn−1, Dn−1 =
Fn−1 and Hn−1 = 1. By analysing the expressions
of the different gn and gn−1 given above, it emerges
that at the Curie Temperature Tc, the probabil-
ity of having a spin up or down may be equal.
Technically, we use peaks in the magnetic suscep-

tibility of the system defined by: χ ∼ (∂2F
∂h2 )h=0.

These new curves simultaneously show a maximum
at the same temperature that we take as Tc when
no anomalous behaviour is observed in the ther-
mal behaviour of free energy F at this moment.
The FOT is obtained when a sharp jump occurs
in the thermal behaviours of the sublattice mag-
netizations followed by a discontinuity of the first
derivative of F .

3. Transitions Temperatures and Phase

Diagrams

3.1. T=0 phase diagram

Before going into detailed calculations of the
phase diagram of the model, we find instructive
to first investigate numerically the ground states
described by the Hamiltonian (Eqn.1). These
states correspond to stable thermodynamic phases.
We get four different ground state configura-
tions with different values of {MA, MB, QA, QB},
namely the ordered ferromagnetic phases O1 ≡
{

1, 3
2 , 1, 9

4

}

or (
{

−1,− 3
2 , 1, 9

4

}

), O2 ≡
{

1, 1
2 , 1, 1

4

}

or (
{

−1,− 1
2 , 1, 1

4

}

) and disordered phases D1 ≡
{

0, 0, 0, 9
4

}

, D2 ≡
{

0, 0, 0, 1
4

}

, which are indicated
in Fig.2 for all q. The disordered phase D1 is char-
acterized by the spin configuration where the to-
tal value of spin in the sublattice A is zero. This
implies MA = 0 because on the sublattice B half
of the spins are in 1

2 state and the other half are

in − 1
2 state, thus leading to MB = 0. The phe-

nomenon is also observed in the disordered phase
D2. For positive values of ∆1 and ∆2, the domi-
nant phase is the ordered phase O1. At the points
A and B (Fig.2), where the coexistence lines meet,
more than two phases coexist.
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-3 -2 -1 0 1
-3

-2

-1

0

1

2

O1=(1,3/2,1,9/4)

O2=(1,1/2,1,1/4)

D1=(0,0,0,9/4)

D2=(0,0,0,1/4)

A

B

∆1/q

∆2
/q

Figure 2: The T = 0 phase diagram of the mixed
Blume-Capel model (see text) for an arbitrary value of
the coordination number q in the (∆1, ∆2) plane. Four
stable phases exist, which are denoted by O1, O2, D1
and D2, respectively.

3.2. Thermal properties of sublattice

magnetizations and phase diagrams

In this section, we present the thermal magnetic
properties of the magnetizations MA, MB and M
of the system. In Figs.3 and 4, we have depicted
the thermal variation of the sublattice magnetiza-
tions MA and MB as a function of the tempera-
ture for two values of the coordination number q
and the reduced crystal-field ∆1 = −0.5 when the
anisotropy field strength of ∆2 is changed. The
results are in perfect agreement with the T = 0K
phase diagram concerning the saturation values.
Indeed, MA falls from its unique saturation value 1
to zero with increasing T , whereas MB shows three
saturation values. For both values of q, the curves
for MA and MB are quite similar to each other
and we expect that this should also be true for
other values of q. They are all continuous curves
of the temperature T , which means that the sys-
tem exhibits only a second-order transition for the
selected values of ∆2. When going from q = 3 to
q = 4, the temperature Tc at which the transition
to the disordered phase (with zero net magneti-
zation) occurs moves to higher temperature values
when ∆2 increases, whereas with decreasing values
of ∆2, the opposite holds.

As shown in Fig.3 (q=3), for ∆2 ≥ −0.8, the
sublattice magnetization MB has a standard char-
acteristic convex shape. When ∆2 decreases from
−0.8 however, the temperature dependence of MB

0 0,5 1
0

0,5

1

0 0,5 1 1,5 2 2,5 3
0

0,5

1

1,5

M
a 

, M
b

-2
-4

-1.6

-1.5

∆1=-0.5

q=3

(a)

kT/J

kT/J
M

a 
, M

b

q=3

1∆ =-0.5

(b)

-1.4 -0.8 0 4

Figure 3: The temperature dependence of the magne-
tizations MA and MB versus kT/J curves when the
values of ∆2 are changed for fixed ∆1 = −0.5 and
q = 3.

may exhibit a rather rapid decrease from its satu-
ration value at T = 0K. The phenomenon is fur-
ther increased when the value of ∆2 approaches the
boundary between the O1 phase and the O2 phase
(∆2 = −1.5). Particularly, for ∆2 = −1.5 the sat-
uration value of MB is equal to 1, which implies
that the first half of spins on the sublattice B are
equal to 3

2 (or − 3
2 ) and the second half are equal

to 1
2 (or − 1

2 ). In our case (J > 0), the averaged
magnetization M is equal to 1. As the value of ∆2

is further decreased, the ground state becomes O2
with MB equal to 0.5 at T = 0K. For ∆2 < −1.5,
the thermal variation of MB exhibits different be-
havior depending on the values of ∆2. Precisely,
for −4 < ∆2 < −1.5, an interesting feature is the
initial rise of MB with an increase in temperature
and then decreasing to zero. This behavior of MA

and MB are similar for q = 4 (Fig.4), but here, the
boundary value of ∆2 is equal to −2. This result
is in agreement with Fig.2 of [18] and Fig.3 of [25]
also with our phase diagram at T = 0K.

Fig.5 shows the temperature dependencies of the
total averaged magnetization M when ∆1 = −0.5
with various values of ∆2. The total magnetization
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0 0,5 1 1,5 2
0
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1
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0
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1,5

q=4

∆1=-0.5

kT/J

(b)

41-0.8-1.9

∆1= -0.5

q=4

M
a 

, M
b

M
a 

, M
b

-2

-2.1

-2.5

-4

kT/J

(a)

Figure 4: The temperature dependence of the magne-
tizations MA and MB versus kT/J curves when the
values of ∆2 are changed for fixed ∆1 = −0.5 and
q = 4.

M presents similar behavior like MA and MB. M
shows three saturation values at T = 0K: 0.75, 1
and 1.25. This result is in agreement with Fig.2
of [18].

Here, we examine the phase diagrams of the
mixed spin-1 and spin-3/2 ferromagnetic Blume-
capel Ising model on the two-fold Cayley tree. In
Figs.6 and 7, the solid lines are used for second-
order transition while the dashed line, denoted by
Lt, represents the positions of the tricritical points
and the full circle represents the tricritical end-
points.

First, we consider the case where ∆1 = ∆2 =
∆ and we obtain the resulting phase diagram in
(∆, kT/J) plane for q = 3, 4 and 6. From Fig.6, we
note that: for all values of the coordination num-
ber q the system exhibits a tricritical point. The
second-order line starts from this tricritical point
and increases with the increasing values of ∆. This
result is in perfect agreement with Fig.7 of [23].
The temperature of the tricritical points increases
with the coordination number q. It is important to
mention that the tricritical points appear at large
negative values of ∆ for all values of q.

0 0,5 1
0

0,5

1

0 0,5 1 1,5 2 2,5
0

0,5

1

1,5

0 0,5 1 1,5 2 2,5
0

0,2

0,4

0,6

0,8

1

0 1 2 3 4
0

0,5

1

1,5

M

kT/J

∆1=-0.5

q=3

M

q=3
∆1=-0.5

kT/J

kT/JkT/J

∆1=-0.5 ∆1=-0.5

MM

q=4 q=4

-2-2.1

-2.5

-4 -1.9 -0.8 1 4

-4

-2

-1.6

-1.5

-1.4 -0.8 0 4

(a) (b)

(c) (d)

Figure 5: The temperature dependence of the total
magnetization M versus kT/J curves when the values
of ∆2 are changed for fixed ∆1 = −0.5 for q = 3 and
q = 4.

Second, we obtain the resulting phase diagrams
in (∆1, kT/J) plane for different values of ∆2 when
q = 3, 4. The critical lines are labelled with values
of ∆2. It is noted from Fig.7, that the phase di-
agrams are topologically similar. In Fig.7, three
phases are shown: P is used for paramagnetic
phase and O1 and O2 denoted the two ordered fer-
romagnetic phases. We show in Fig.7(a) the phase
diagram of the model at fixed values of ∆2 and
varying value of ∆1 for q = 3. From this figure, one
can clearly observe that for −4, 5 < ∆1 < −1.5, the
tricritical behaviour appears. In this domain, the
tricritical line Lt presents two end-points: A1 and
B1. From a different perspective, Fig.7(b) shows
the phase diagram of the model for q = 4. We
notice that the tricritical behaviour exists in the
region −6 < ∆1 < −2. In this region, the Lt
presents again two end-points: A2 and B2. These
results obtained are in agreement Fig.3(a,b) of [22]
and Fig.2(a) of [25]. It is important to mention
that the width of the tricritical domain increases
with the coordination number q.
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∆1=∆2=∆

∆

kT
  /

J
c

q=6

q=4

q=3

TCP

Figure 6: Finite temperature phase diagrams of the
model in the (∆, kT c/J) plane for q = 3, 4 and 6. The
tricritical (TCP ) is indicated by the full circle.

4. Conclusion

In summary, the magnetic properties of the mixed
spin-1 and spin-3/2 Blume-Capel on the two-fold
Cayley tree are studied using the exact recursion
relations method (Fig.1). The resulting phase di-
agrams of this model are presented for the coor-
dination numbers q = 3, 4 and 6. First, we have
studied the thermal properties of the magnetiza-
tion of each sublattice and the net magnetization.
The result is compared to those obtained by Z. H.
Xin et al., who used the effective-field theory with
correlation to study the same model [18]. Good
agreement was also noticed with the T = 0 phase
diagram (Fig.2). Second, we have found that when
the strengths of the crystal-field of the sublattices
are equal, the system exhibits a tricritical point
(TCP) for all values of the coordination number
q. This result is in perfect agreement with those
obtained by C. Ekiz who used the same method

to study the mixed spin-1 and spin-3/2 on the
Bethe lattice in ferromagnetic version [23]. Fi-
nally, we studied the resulting phase diagrams of
the model in (∆1, kTc/J) plane when the crystal
field strengths are not equal; the system presents
interesting properties.
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Figure 7: The critical temperature of the model as
a function of the crystal-field interaction ∆1 for q =
3 and q = 4. The number accompanying each curve
denotes the values of the crystal-field interaction ∆2.
Lt indicates the tricritical line. A1 and B1 indicated by
the full square are the end-points of Lt line for q = 3.
A2 and B2 indicated by the full square are the end-
points of Lt line for q = 4.
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Magn. Magn. Mater, in press.

[21] A. Bobák, O. F. Abubrig, D. Horváth and M. Jas-
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