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1. Introduction

As we all know, single microscopic particles such
as electrons or atoms do not behave according to
the familiar classical (Newtonian) physics which
describes the everyday world, but rather accord-
ing to the prescriptions of quantum mechanics,
the outcome is often bizarre and counterintuitive.
When a macroscopic number of such particles (say
∼ 1023) is assembled under conditions where the
effects of quantum mechanics are important, the
results can be even more spectacular; they include
macroscopic phenomena such as superfluidity and
superconductivity, which are completely impossi-
ble to explain in classical terms. Most, though not
all1 of these exotic phenomena, are a result of a
phenomenon which I shall refer to generically as
“quantum condensation,” in which a macroscopic
number of particles or pairs of particles—a nonzero
fraction of all particles present—occupy a single
quantum state; this phenomenon is traditionally
referred to as Bose-Einstein condensation (BEC)
when it occurs in a system of bosons such as liq-
uid 4He, and as Cooper pairing when it occurs,
for pairs of particles, in a system of fermions such
as the electrons in a superconducting metal. As a
result of quantum condensation, the characteristi-
cally quantum-mechanical behavior which we are
used to seeing at the level of single electrons is as
it were amplified by the cooperation of condensed
particles and can manifest itself at the macroscopic
level.

The present essay is intended as a general in-
troduction to the subject of quantum condensa-
tion and its consequences, as manifested in a vari-
ety of physical systems. I will try to review the
fundamental physical ideas, usually without de-

1 A well-known example of a macroscopic state which is
not directly related to the phenomenon of quantum con-
densation, but nevertheless has very exotic properties, is
the fractional quantum Hall effect.

tailed derivation2, and compare the theoretical pre-
dictions with the observed experimental behavior
of the relevant systems. I will confine myself to
phenomena observable under terrestrial (“labora-
tory”) conditions, and so will not explicitly address
the question of quantum condensation as it may
occur, for example, in neutron stars.

2. When are quantum effects important?

In discussing the circumstances under which many-
particle systems can show nonclassical and possi-
bly exotic behavior, it is essential to distinguish
between two kinds of effects, which for clarity, I
shall call respectively those of quantum mechan-
ics and those of quantum statistics. By the effects
of quantum mechanics, I simply mean the result
of replacing the Newtonian description of particle
dynamics by one based on the Schrödinger equa-
tion. Such effects of course show up already at
the single-particle level; a typical example of their
manifestation in a many-body system would be the
fact that the low-temperature specific heat Cv of
an insulating crystalline solid is not given by the
classical equipartition theorem but rather by the
Debye law Cv ∝ T 3. While such effects are often
quantitatively very important in macroscopic sys-
tems, they do not usually, by themselves, give rise
to particularly exotic forms of behavior.

By the effects of quantum statistics, I mean
something more, namely the consequences of the
characteristic indistinguishability, in the quantum
description, of elementary particles of the same
type. As is well known, elementary particles can be
separated into two classes according to the value
of their intrinsic angular momentum (“spin”) in

2 Most of the ideas I will discuss here are treated in con-
siderably greater detail in my recent book ([4]) which in
particular provides derivations of many statements made
below without proof. I refer to this book throughout as
QL.
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units of Dirac’s constant ~: those with spin n~,
where n is any integer including zero (“bosons”),
and those with spin n~/2 where n is an odd inte-
ger (“fermions”). Electrons, neutrons and protons
have spin 1/2 and are thus fermions: photons have
spin 1 and so are bosons.

It is a fundamental consequence3 of the indistin-
guishability of elementary particles that the many-
body Schrödinger wave function must be either
symmetric or antisymmetric under exchange of
identical particles. That is, if r1 and σ1 denote,
respectively, the coordinates and the spin projec-
tion on some arbitrarily chosen axis of particle 1,
and r2 and σ2 the corresponding variables for par-
ticle 2, then if 1 and 2 are of identical nature we
must have

Ψ(r1σ1 : r2σ2) = ± Ψ(r2σ2 : r1σ1) (1)

The celebrated spin-statistics theorem, the proof of
which requires the apparatus of relativistic quan-
tum field theory (see e.g. [7]), assures us that the +
sign applies in the case of bosons and the − sign for
fermions. An immediate consequence of eqn. (1)
for fermions is the Pauli principle: no two identical
fermions can be in the same state (have identical
quantum numbers). These considerations are for-
malized in the so-called second-quantization nota-
tion, but for our purposes the simple Schrödinger
description with the constraint (1) will be ade-
quate.

The considerations of the last paragraph apply
as they stand only to “elementary” particles such
as electrons and protons. What about composite
objects such as the 4He atom (composed of 2 pro-
tons, 2 neutrons and 2 electrons)? For a reason
to be discussed in the next paragraph, the only
symmetry we need worry about in this case is that
corresponding to the only process4 for which there
is any appreciable probability amplitude, namely
exchange of two atoms as wholes. If the atom
in question contains a total of NF fermions, then
the factor required by eqn. (1) is (−1)NF . Thus,
for example, the neutral atoms 4He (NF = 6)
and 87Rb(NF = 124) behave as bosons, while
3He(NF = 5) and 40K(NF = 59) are fermions. As
we will see below, liquids of the isotopes 3He and

3 In 3 or more spatial dimensions. In 2D(and 1D) there are
additional exotic possibilities (“anyons”), see [5].

4 Exchange of single fermions typically requires tunnelling
through a large distance and is exponentially suppressed.
Cf. below.

4He, despite being identical in their chemical prop-
erties and differing only modestly in mass, behave
in spectacularly different ways; this is a dramatic
illustration of the importance of the difference in
“statistics.”

It is very important to appreciate that the (anti)
symmetrization constraint (1) only has physical
significance to the extent that the identical parti-
cles in question can change places; otherwise they
have, as it were, no means of “knowing” that they
are identical. A nice illustration of this principle
is a comparison of the vibrational and rotational
levels of homoatomic diatomic molecules such as
C2 for the case of homonuclear (e.g. 12C2) and
heteronuclear (e.g. 12C −14 C) molecules; the vi-
brational levels (which do not involve the atoms
changing places) are identical5 in the two cases,
while in the rotational spectrum (which does in-
volve) all values of relative angular momentum
K occur for the heteronuclear case, but for the
homonuclear case, in accordance with (1), only
even values occur.6 (Note that in the case of the
rotational motion it is not required that the two
identical atoms are ever at the same point in space
at the same time; it is enough that (when viewed
classically) they change places.) The above gen-
eral principle explains why, in the case of complex
objects such as the 4He atom, we do not need to
concern ourselves explicitly with the symmetry un-
der, e.g., exchange of a single neutron between the
two nuclei with the other nucleons and electrons
held fixed; such processes have essentially zero am-
plitude to occur under conditions of experimental
interest.

Assembling the above considerations, we can now
determine the conditions which must be satisfied
if a system of particles of a given type is to show
not only the effects of quantum mechanics but also
those of quantum statistics. A rough-and-ready
criterion for the effects of quantum mechanics not
to be swamped by thermal motion is that the ther-
mal energy kBT should be . the characteristic
spacing of the energy levels of the system. For a
dense system of particles it is reasonable to assume
that the characteristic spread of the groundstate
wave function, ∆x, should be of the order of n−1/3

whose n is the particle density. Then by the uncer-
tainty principle, the momentum uncertainty ∆p is

5 Apart from a trivial effect coming from the difference in
the reduced mass in the two cases.

6 Even (odd) values of K correspond to a relative wave
function even (odd) under exchange of the two atoms.
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∼ ~n1/3, and we may estimate the spacing of the
energy levels as ∼ (∆p)2/2m, where m is the mass
of the particle in question. Thus the condition for
the effects of quantum mechanics (the Schrödinger
description) to be appreciable is

kBT . n2/3
~

2/m (2)

Condition (2) (which actually turns out to be
somewhat on the pessimistic side) is certainly ful-
filled for any system of electrons and even atoms
at typical solid or liquid density at temperatures
which are nowadays routinely attainable in the lab-
oratory.

However, as already pointed out, if in addition
to the effects of quantum mechanics we wish to
see those of quantum statistics, then it is neces-
sary to ensure, in addition, that particles in ques-
tion have a reasonable probability amplitude to
change places. In a typical solid, either crystalline
or amorphous, such amplitudes (for the atoms) are
usually exceedingly small; and the same holds for
the electrons if the solid in question is an insula-
tor. On the other hand, in an ordinary gas it is
impossible to fulfill condition (2)7, since the vapor
pressure (i.e. n) tends to zero much faster than
T . Consequently, with one proviso to be discussed
below, any system which is to show appreciable ef-
fects of quantum statistics must be in some sense or
other in the liquid phase, and for this reason such
systems are often called “quantum liquids.” The
major known examples of terrestrial quantum liq-
uids are: (1) the two stable isotopes of helium (3He
and 4He) in the liquid phase; (2) the electrons in a
typical metal; (3) ultracold trapped atomic gases,
typically of alkali atoms. The last case, of course,
does not fit the conventional definition of a “liq-
uid” (in fact, typical densities are a factor ∼ 10−3

of that of air at STP!); it is able to fulfill condi-
tion (2) only because recombination of the atoms
to form molecules and eventually the (generally
stable) solid phase is strongly inhibited by vari-
ous rather stringent conservation rules, so that the
gas phase is stable over sufficiently long times (∼
secs-mins) for experiments to be possible on it.

Although there exist “quantum liquid” phases
which do not show the phenomenon of quantum
condensation (for example, those of the electrons
in a nonsuperconducting metal, or of liquid 3He

7 We did not actually show that for a dilute phase such as
a gas, condition (2) is necessary. However, we will see
below that this is in fact so.

above 3mK), and these are of considerable interest
in their own right, I will not discuss them in this
essay. Rather, I will proceed right away to that
class of quantum liquids, namely the quantum-
condensed ones, which show the most spectacular
quantum effects at the macroscopic scale.

3. Quantum condensation

The very simplest example of a many-body system
exhibiting the phenomenon of quantum condensa-
tion is a free gas of spinless particles obeying Bose
statistics in three dimensions.8 If we enclose such
a system in a cubic box of side L with periodic
boundary conditions, then the single-particle en-
ergy eigenstates are plane waves with wave vector
k such that ki = 2πℓi/L(i = x, y, z) with the ℓi
integral (note that the “zero-momentum” (k = 0)
state ℓx = ℓy = ℓz = 0 is allowed), and with en-
ergy Ek = ~

2k2/2m (so that the energy of the k = 0
state is zero). Because of the requirement (1) (with
the + sign) on the many-body wave function, there
is one and only one state of the many-body system
which corresponds to having exactly n1 particles
in single-particle states 1, n2 in state 2, etc. What
this means, intuitively, is that the “entropic” fac-
tor N !/⊓

i
ni! which, in a system not subject to the

constraint(1) would tend to favor a wide distribu-
tion of particles over the available single-particle
states, is removed, and thus many-body states with
a large concentration of particles in a single one-
particle state are no longer entropically disfavored
as they would be in that case. More quantita-
tively, a standard statistical-mechanical argument
(see e.g. [3, section 53] shows that when the system
is held at (a sufficiently high) temperature T the
average number of particles in the single-particle
state k is given by the Bose distribution

〈nk〉(T, µ) = (expβ(Ek − µ) − 1)
−1

(β ≡ 1/kBT )
(3)

In formula (3) the quantity µ is the chemical poten-
tial, which must be fixed by the requirement that
the average value of the total number of particles
as calculated from (3) should be equal to the total
number N which we actually have in the system,

8 While no existing experimental system exactly imple-
ments this idealized model, a dilute gas of 4He atoms
in the metastable 3S state (4He∗), with spins strongly
aligned by a magnetic field, comes close to it.
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i.e. that
∑

k

〈nk〉(T, µ) = N (4)

Note that for (3) to make sense we must have µ ≤
0.

Now it is easy to show from (3) and (4) that in
the limit T → ∞ the quantity µ tends to −∞ (so
that we recover the classical Maxwell-Boltzmann
distribution). But since the sum on the LHS of
(4) is an increasing function of both µ and T , it
is clear that decreasing temperature leads to an
increase of µ, and moreover (given that µ ≤ 0)
that an upper bound on the LHS of (4) is its value
for the given T and µ = 0. So, if it should turn out
that this value is less than N , we are in trouble!
Will this actually happen? Well, since we intend
as usual to take the thermodynamic limit (V →
∞, N → ∞, N/V → const), and in this limit the
allowed values of k and hence of Ek are very closely
spaced, it is tempting when evaluating the LHS of
eqn. (4) to make the standard approximation of
replacing the sum by an integral. If we do that,
then we find that the quantity

∑

k〈nk(T, µ = 0)〉 as

thus evaluated is equal to N(T/Tc)
3/2, where the

“critical temperature” Tc is given by the expression

kBTc = 3 · 31 n2/3
~

2/m (5)

Note that this temperature is exactly of the order
of magnitude of the temperature below which we
estimated, according to eqn. (2), that quantum ef-
fects would be significant (the latter is sometimes
called the “degeneracy temperature”); an order-of-
magnitude estimate of Tc (though not, of course,
its exact numerical value) may be obtained by sim-
ply setting the number of single-particle states with
energy less than the thermal energy kBT equal to
the total particle number N .

What happens in the case of T ≤ Tc when eqn.
(4), as evaluated in the above approximation, can
no longer be fulfilled? This question was exam-
ined by Einstein in a famous 1925 paper, with the
conclusion that under these conditions a nonzero
fraction of all the particles, that is a macroscopic
number No, occupy a single one-particle state,
namely that with k = 0 and thus zero energy. The
remaining particles occupy the k 6= 0 states, and
their contribution to the LHS of (4) may be legiti-
mately calculated, as above, by replacing the sum
by an integral and is equal to N(T/Tc)

3/2. Thus
we obtain for the “condensate fraction” No(T )/N
the result

N0(T )

N
= 1 − (T/Tc)

3/2 (free Bose gas) (6)

This macroscopic occupation of a single one-
particle state is known as Bose-Einstein condensa-
tion (BEC)9; it, or rather its generalization to more
realistic systems, is at the root of the spectacular
macroscopic phenomena displayed by quantum liq-
uids.

Let’s now consider the more realistic case of a
system of interacting Bose particles, such as 4He
atoms; for the moment let us imagine that they are
in thermal equilibrium in zero external potential
(e.g. in a box of volume V with periodic bound-
ary conditions, so that the zero-momentum state
(k = 0) is still available). Although the quantity
nk is no longer a good quantum number, it is still
possible to ask about its expectation value 〈nk(T )〉
(where the 〈 〉 now denote not only thermal but
quantum-mechanical averaging), and in particular
to ask whether the quantity 〈no(T )〉 (hereafter de-
noted No(T )) is a nonzero fraction of the total par-
ticle number N in the thermodynamic limit, i.e.
whether BEC occurs. It is clear that the answer
cannot be an unqualified yes, since we know from
experiment that at pressures above ∼ 26 atoms a
system of 4He atoms forms a regular crystalline
solid, and it is easy to show that such a solid has
No(T ) ∼ 0(1) in the thermodynamic limit. How-
ever, in a theoretical tour de force more than 40
years ago, Gavoret and Nozières showed that pro-
vided the groundstate can be obtained from that
of the noninteracting Bose gas by applying per-
turbation theory in the inter-atomic interaction,
No/N is indeed of order 1 in the thermodynamic
limit. In fact, it is almost universally believed that
this is the case in liquid 4He; however, the T = 0
“condensate fraction” No(0)/N , which can be es-
timated from neutron scattering data, is not 100%
as it would be for a free Bose gas but closer to 10%.
It is also almost universally believed that the so-
called lambda-transition of liquid 4He , which oc-
curs at a temperature (Tλ) of 2 ·17K (at saturated
vapor pressure) marks the onset of BEC in the
liquid; this hypothesis is consistent with the fact
that for a free Bose gas of the mass and density of
4He the value of Tc predicted from eqn. (5) would

9 The above argument for BEC (which is the standard
textbook one) might reasonably be questioned, on the
grounds that to introduce the chemical potential and thus
obtain eqn. (3) we had to relax the constraint of particle
number conservation, whereas we appear to have invoked
it in eqn. (4). For a derivation which avoids this difficulty,
see [6].
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be about 3K. The so-called He-II phase which oc-
curs below the lambda-transition has many very
anomalous properties including superfluidity, and
as we shall see below that, this is to be expected if
it is indeed characterized by the presence of BEC.

The above discussion, which assumes that the
system is moving in free space and moreover is
in thermal equilibrium, is adequate as at least a
start for discussing the behavior of 4He in the
superfluid (He-II) phase. However, when we turn
to the atomic alkali gases we find that they are
typically confined by some kind of external (mag-
netic or laser) potential and, moreover, are often
quite far from thermodynamic equilibrium. It is
therefore necessary to generalize the idea of BEC
to take account of these complications. We pro-
ceed as follows: First, suppose that the many-body
system (assumed to be composed of N identical
particles) is in a single pure state (which in gen-
eral need not be an energy eigenstate) and thus is
described by a wave function10 Ψ(r1r2...rN : t).
Let us select one of the N particles—say particle 1
for definiteness—and denote its coordinate r, and
write the remaining N−1 coordinates symbolically
as Q, so that the wave function is written symbol-
ically as Ψ(r,Q : t). We then define the single-
particle density matrix at time t, ρ1(r, r

′ : t), by
the relation

ρ1(r, r
′ : t) ≡ N

∫

d Q Ψ∗ (r,Q : t) Ψ (r′,Q : t)

(7)

In an intuitive sense, the quantity ρ1(r, r
′ : t) is

as near as we can get to a description of “the be-
havior of a single particle averaged over that of all
the others.” For the case where the many-body
state is a mixture, i.e. the system is in one of sev-
eral orthogonal states Ψnr,Q : t) with probability
pn, the generalization of the definition (7) is the
obvious one (we just attach the same subscript n
to Ψ and Ψ∗ in (7), multiply by pn, and sum over
n); thus the quantity ρ1 is uniquely defined for any
many-body state.

Now, from its definition the quantity ρ1(r, r
′ : t)

is Hermitian (i.e. ρ1(r, r
′ : t) ≡ ρ∗1(r

′, r : t)),
and hence by a well known theorem it follows that
at any time t we can find an orthonormal set of
eigenfunctions χi(r, t) and corresponding eigenval-

10 For pedagogical simplicity I neglect for the moment any
internal (e.g. hyperfine) degrees of freedom of the parti-
cles in question.

ues ni(t) such that ρ1 can be written in the form

ρ1(r, r
′ : t) =

∑

i

ni(t)χ
∗

i (rt)χi(r
′t) (8)

Eqn. (8) is quite general (we did not actu-
ally even assume that the particles involved obey
Bose statistics). Note that while in the case of
a translation-invariant system in thermal equilib-
rium the eigenfunctions χi(rt) are, from symmetry,

just the plane waves V −1/2eik·r and the ni thus
correspond to the 〈nk〉 defined above, in general
there is no simple relation between the χi and the
eigenfunctions of the single-particle Hamiltonian,
even in equilibrium. However, irrespective of this,
it is clear that once the orthonormal basis χi(rt)
has been determined, the quantity ni(t) has the in-
tuitive physical significance of the “average number
of particles in single-particle-(like) state i at time
t.”

Let us now consider explicitly a Bose system,
take the limit of large11 N and consider three
possible types of behavior of the quantities ni(t)
in this limit:

1. All ni(t) are 0(1)
2. One and only one of the ni(t) is 0(N), the

rest 0(1).
3. More than one of the ni(t) are 0(N).

In case (1), we say we have a “normal” system;
most gases and liquids composed of bosons, includ-
ing liquid 4He in the so-called He-I phase which oc-
curs above Tλ, are believed to be normal systems in
this sense. Case (3) corresponds to what is usually
called “fragmented BEC”; it is unusual, but can
occur under certain rather special conditions (see
QL, chapter 2, section 6). The case of most inter-
est to us in the present context is (2), which corre-
sponds to what is sometimes called “simple BEC”
or more often just “BEC,” period. In this case it is
conventional to denote the single macrosopic eigen-
value of ρ1 (the “condensate number”) by No(t)
and the corresponding eigenfunction (“condensate
wave function”) by χo(r : t), and to introduce the

11 I avoid the term “thermodynamic limit” since, for exam-
ple, in the case of a set of atoms confined in a harmonic
trap this does not strictly exist.
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order parameter Ψ(rt) by the prescription12

Ψ(r, t) ≡
√

No(t) χo(rt) (9)

Why do we normally assume that any BEC oc-
curing in an interacting Bose system is of the
“simple” type (case (2) above) rather than “frag-
mented”(case (3))? Most of the existing experi-
mental data, both on He-II and on the alkali gases,
seems consistent with this assumption, but its the-
oretical basis is far from trivial. One important
consideration which is relevant to this question is
the following: given any many-body state which is
fragmented with two different macroscopic eigen-
values, it turns out that it is always possible to
express it as a quantum superposition of many-
body states which exhibit simple BEC (often called
“coherent” states), and in many (though not all)
circumstances the total energy of the fragmented
states is, to an excellent approximation, the aver-
age of that of the coherent states involved. To the
extent that this is true it follows that there must
be at least one coherent state which has energy at
least as low as that of the fragmented state; thus
the latter cannot be energetically favored, and in-
deed barring pathology is likely to be disfavored.
For a more detailed discussion, see QL Chapter 2,
Section 3 and Appendix B. From now on I shall
assume, unless explicitly stated otherwise that any
BEC occurring in our system is of “simple” type
(i.e. we have case (2), not case (3)), so that the
order parameter Ψ(rt) can be defined unambigu-
ously by eqn. (9).

Let us now turn to the question of the possibility
of quantum condensation in a system of fermions.
One thing is immediately clear: in view of the Pauli
principle and the interpretation of the eigenvalues
ni(t) of the single-particle density matrix ρ1 as “the
average number of particles in single-particle state
i”, none of the ni(t) can ever exceed 1; this con-
clusion is completely independent of the nature of
any confining potential, the presence or absence of
interparticle interactions or whether the system is
in thermal equilibrium. Consequently, we conclude
that for a Fermi system only case (1) above can oc-
cur, i.e., BEC as we have defined it is impossible.

However, that is by no means the end of the
story. Let us recall that all the (non zero-mass)

12 Alternative definitions of the order parameter are com-
mon in the literature; their advantages and disadvantages
are discussed in QL Chapter 2, Section 2.

bosons which occur in real life are actually com-
plexes of an even number of fermions; e.g. the
4He atom is actually a 6-fermion complex. Let’s
then consider the following thought-experiment:13

We imagine a pair of identical fermions of spin 1/2,
with an interaction potential which is overall at-
tractive in the s-state and whose strength can be
tuned by adjusting some parameter. If the attrac-
tion is sufficiently strong, the pair will be able to
form a diatomic molecule with ℓ = S = 0 (with
a radius as equal14 to the (positive) scattering
length), while if it is too weak the molecular state
will not be bound but the zero-energy s-wave scat-
tering length as will be negative. Consider now a
large number N of such fermions in a larger volume
V ; we will take the usual thermodynamic limit and
denote by n ≡ N/V the total fermion density in
this limit, so that the average interparticle spacing
is ∼ n−1/3 ≡ ro. Suppose we start by setting the
attractive potential to be strong, so that the ra-
dius as of the resulting molecule is ≪ r0. Then it
is overwhelmingly plausible that the groundstate of
the N -particle system corresponds to the fermions
having paired off to form N/2 diatomic molecules,
and since these molecules behave as bosons they
should be Bose-condensed; in fact, in the limit
as ≪ r0 these molecules should be virtually nonin-
teracting, and we might therefore guess that No (as
defined above for bosons) would be approximately
equal to N/2. This limit is known in the literature
as the “BEC limit.”

How would we describe this state of affairs ex-
plicitly in terms of the fermions? The many-
body wave function Ψ(r1σ1, r2σ2...rNσN ) must,
of course, be it antisymmetric under exchange
riσi ⇆ rjσj (where σi is the projection of the spin
of the i-th fermion on some conventionally chosen
axis), and for the simple case N = 2 this is auto-
matically satisfied by the ℓ = S = 0 groundstate,
which is of the form (in an obvious notation)

Ψ(r1σ1r2σ2) = 2−1/2(↑1↓2 − ↓1↑2) · f(|r1 − r2|)

≡ ϕ(r1r2 : σ1σ2) (10)

When we assume f is normalized to unity, the
ansatz for the many-body groundstate which cor-
responds to the hypothesis of Bose condensation

13 Which in the last three years has actually been realized to
all intents and purposes in the laboratory, see QL, chapter
8, section 4.

14 I assume for simplicity that as is large compared to the
physical range of the potential.
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of the molecules with No = N/2 is, apart from
normalization

ψ(r1σ1, r2σ2...rNσN )

= Aϕ(r1r2, σ1σ2)ϕ(r3r4σ3σ4)

....ϕ(rN−1rNσN−1σN ) (11)

where A denotes the operation of antisymmetriza-
tion not only within a bracket ( ) (already im-
plemented automatically by the form of ϕ); but
also between brackets, e.g. under the interchange
r1σ1 ⇄ r3σ3. Actually, for the reason given
in section 2, in this limit the effects of antisym-
metrization “between brackets” is negligible, be-
cause the physical probability amplitude for two
single fermions to exchange their partners is van-
ishingly small15, and hence the representation of
the system as a system of N/2 condensed bosons
is entirely legitimate.

Let us, nevertheless, ask whether we can define
a property (other than the wave function itself)
which explicitly refers to the fermions and charac-
terizes the “condensed” nature of the system. The
obvious quantity to look at is the one which for
N = 2 simply reduces to the 2-particle wave func-
tion, namely the two-particle density matrix ρ2.
To define this quantity, we proceed analogously to
the Bose case; that is, we pick out arbitrarily two
particles, say for definiteness 1 and 2, indicate the
coordinates and spins of the remaining N − 2 par-
ticles by Q (so that

∫

d Q indicates both an in-
tegration over N − 2 coordinates and a sum over
N − 2 spins) and define

ρ2(r1r2σ1σ2 : r′

1r
′

2σ
′

1σ
′

2 : t)

≡ N(N − 1)

∫

dQΨ∗(r1r2σ1σ2 : Q : t)

Ψ(r′

1r
′

2σ
′

1σ
′

2 : Q : t) (12)

Analogously to the Bose case, ρ2 is intuitively our
best description of the “behavior of a pair of parti-
cles averaged over that of the N−2 other particles
in the system”. If we evaluate expression (12) with
Ψ given by the (time-independent) ansatz (11), we
find after some labor (taking account of the correct

15 Each of the fermions would have to tunnel a distance ∼ ro

with a negative energy ∼ ~2/ma2
s ; the WKB exponent

for this process is ∼ ro/as ≫ 1. Configurations in which
the COM’s of the two molecules are . as apart have a
probability ∼ (as/ro)3 ≪ 1.

normalization, etc.) that

ρ2(r1r2σ1σ2 : r′

1r
′

2σ
′

1σ
′

2 : t)

= (N/2) · ϕ∗(r1r2σ1σ2 : t) ϕ (r′

1r
′

2σ
′

1σ
′

2 : t)

+ ρ′2 (13)

where all the eigenvalues of ρ′2 are 0(1). Thus ρ2

has a single macroscopic (N0 ∼ N) eigenvalue, and
the corresponding eigenfunction is just that of the
composite bosonic molecule. Note that the an-
tisymmetrization “between brackets” is automat-
ically taken care of in definition (12), and does not
appear explicitly in (13).

So far, we do not appear to have gained anything
much by writing things explicitly in terms of the
component fermions: all the physical properties of
the system in this limit are just those of a set of
condensed composite bosons. However, let us now
imagine that we gradually turn down the strength
of the inter-fermion potential. As we do so, the
molecular radius as becomes larger and larger, and
eventually becomes comparable to the interpar-
ticle spacing ro (or the “intermolecular” spacing
21/3ro). At this point our argument that the effects
of “inter-bracket” antisymmetrization are negligi-
ble fails, and independently of that the interaction
between fermions on “different” molecules becomes
appreciable. Indeed, by this time it has become
impossible to say which is the unique “partner” of
any given fermion. If we weaken the interaction
yet further, we eventually reach the point at which
a single fermion pair no longer forms a molecule
(but the magnitude of the s-wave scattering length
as is large (actually infinite!) compared to ro);
this point is often called the “unitarity limit” in
the literature. At this point as changes sign, go-
ing from +∞ to −∞. Weakening the interaction
further still, we finally reach a situation where the
s-wave scattering length, while negative, is much
less than the interparticle spacing ro; for a reason
we shall see below, this limit is often referred to as
the “BCS limit.”

Now, once we have departed appreciably from
the “BEC limit” ro ≫ as > 0 it is clear that
we would not necessarily expect the simple ansatz
(11) for the many-body wave function to be even
qualitatively correct. Nevertheless, we can still de-
fine the two-particle density matrix by eqn. (12),
and inquire whether it still has a single macro-
scopic eigenvalue. Remarkably, both theoretical
arguments and the experimental evidence newly
attained in recent studies of the Fermi alkali gases
suggest that, at least for a class of “reasonable” po-
tentials, the answer is yes, not only in the regime
as > 0 (when the two-particle state is bound) but
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even for as < 0, when there is no 2-particle bound
state! Indeed, if we take the limit −as → 0 (and re-
place the atoms by electrons) we reach precisely the
system studied by Bardeen, Cooper and Schrieffer
in their famous 1957 paper on superconductivity;
in this limit (the limit of “almost-free” fermions
subject to a weak two-particle attraction) it is al-
most universally believed that the groundstate in-
deed corresponds to a ρ2 which has a single macro-
scopic eigenvalue “of order” N . However, while
in the BEC limit the ratio No/N is 1/2, in this
“BCS” limit it is exponentially small: in fact, for
a two-body potential parametrized by an s-wave
scattering length as, the BCS formula for No is

No/N ∼ exp− π/(2kFas) (14)

where kF ≡ (3π2n)1/3 is the Fermi wave vector of
the free Fermi gas. Correspondingly, it is believed
that the transition temperature to the “quantum-
condensed” state (No(T ) ∼ N) which in the BEC
limit would be expected to be given by formula
(5) (with m twice the fermion mass) and thus to
be of the order of the Fermi temperature Tc ≡
~

2k2
F /2mk, is in the BCS limit suppressed relative

to TF by the same exponential factor as in (14).
In the following we will consider arbitrary states

(not necessarily thermodynamic equilibrium ones)
of a Fermi system which are characterized by
the fact that the two-particle density matrix
ρ2(r1r2σ1σ2 : r′

1r
′

2σ
′

1σ
′

2 : t) has one and only
one16eigenvalue of order N (i.e. which are analog
of case (2) for the Bose system). For such cases,
we denote this single macroscopic eigenvalue No(t)
and call it the “condensate number”; the corre-
sponding eigenvalue will be denoted χo(r1r2σ1σ2 :
t) and called the “wave function of the conden-
sate” (or “wave function of the Cooper pairs”, cf.
below). Finally, we can introduce an order param-
eter for the Fermi system by the prescription (the
notation F rather than Ψ for this quantity has be-
come conventional)

F (rσ, r′σ′ : t) ≡
√

No(t) χo(rr′σσ′ : t) (15)

The “objects” which are described by the function
F are pairs of particles, and are often referred to
as “Cooper pairs.” We can rewrite (15) in terms
of the “center-of-mass” and “relative” coordinates
of the pair, R ρ:

F (rσ, r′σ′ : t) ≡ F (R : ρ, σ, σ′ : t) (16)

16 Just as in the Bose case, the reason why “fragmented”
states are rare is quite subtle: see QL pp. 207–8.

In the simplest cases (“classic” (BCS) supercon-
ductors and the Fermi alkali gases so far investi-
gated experimentally) we can write F (R : ρ, σσ′)
in the approximate form

F (R : ρ, σσ′ : t) ∼= Ψ(R, t)f(ρ, σσ′) (17)

where the “internal” (relative) wave function of the
pair has the form of an s-wave spin singlet, i.e.

f(ρ, σ, σ′) = 2−1/2(↑1↓2 − ↓1↑2)f(|ρ|) (18)

where the actual form of f(|ρ|) is fixed by the ener-
getics and is thus not free to vary in an interesting
way. In such a case all the “interesting” behavior of
the system is associated with the function Ψ(R, t)
which is, in effect, the center-of-mass wave function
of the pairs and turns out, up to normalization, to
be nothing but the celebrated “macroscopic wave
function” introduced long ago by Ginzburg and
Landau on the basis of phenomenological argu-
ments. In some other cases (superfluid 3He and
probably the cuprate superconductors) the “inter-
nal” part of the wave function is not uniquely fixed
by the dynamics and may itself be a function of
time; for example, the superfluid A phase of liquid
3He is believed to correspond to pairing in a spin
triplet state with projection zero on some axis d
and with apparent angular momentum ~ around
some axis ℓ̂, so that if we chose this axis as the
z-axis and suppose for simplicity that it and the
overall amplitudes are constant in space and time
we have schematically

F (ρ, σ, σ′) = const. 2−1/2(↑1↓2 + ↓1↑2)d

f (|ρ|) sin θ eiϕ (19)

with θ and ϕ the spherical polar angles of ρ. In
the more general case the axis ℓ̂ (and the axis d
associated with the spin state) may itself vary in
space and time.

4. Effects of condensation

In the rest of this paper I shall discuss, at a qualita-
tive level, the principal effects peculiar to a quan-
tum condensate. All of them are in the last re-
sort consequences of the fact that a nonzero frac-
tion of all the particles (in a Bose system) or of
all the pairs of particles (in a Fermi system) are
in the same single-particle/two-particle quantum
state, and that this is true not only in global ther-
mal equilibrium but also for states which are “suf-
ficiently close” to (stable or metastable) equilib-
rium. A useful way of displaying this feature is
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to define, as above, a condensate wave function
(order parameter) and to write the free energy as
a functional of this order parameter. In the sim-
plest case (a spinless Bose system such as liquid
4He, or the classic superconductors) the OP is in
effect the COM wave function17 of the condensate
atoms/pairs and is a complex scalar Ψ (R): in this
case, in the absence of electromagnetic gauge cou-
pling, the free energy functional has the form (we
replace R by r for clarity)

F{Ψ(r) : T } =

∫

dr
{

Fo(T ) − α(T )|Ψ(r)|2

+
1

2
β(T )|Ψ(r)|4 + γ(T )|∇∼Ψ|2

}

(20)

with the coefficients α(T ), β(T ), γ(T ) > 0. With
such a free energy functional, it is clear that devia-
tions from the equilibrium order parameter Ψ(r) =
√

α(T )/β(T ) eiδ (δ = const) in either phase or am-
plitude are energetically disfavored.

The most directly visible effect of condensation
is the behavior of the spatial density distribution
of a dilute Bose gas such as 87Rb confined in a 3D
harmonic trap (frequency ωo). In such a trap the
unique quantum-mechanical groundstate for a sin-
gle particle has energy 3

2
~ωo and is spread over a

linear dimension azp ∼ (~/mωo)
1/2 which is typi-

cally ∼ 1µ. The transition temperature Tc of a gas
of N atoms to the BEC state is ∼ N1/3

~ωo/kB,
so at temperatures a little above this the width
rth of the density distribution in real space, which
is given by 1

2
mω2

or
2
th ∼ kBT , is of order N1/6azp;

since typically N ∼ 106 this is ≫ azp. Now let
us ask what happens below Tc, when BEC sets
in. If the gas was completely noninteracting, a
nonzero fraction (tending to 1 as T → 0) of all the
atoms would immediately concentrate, according
to (the appropriate generalization of) eqn. (6), in
the groundstate, so that one would see a huge spike
in the distribution with width ∼ azp. In real life,
most alkali gases have a repulsive interaction be-
tween the atoms, which tends to broaden the peak
to a few times azp; however, the effect is still quite
spectacular, see e.g. [1].

A second characteristic consequence of quantum
condensation is various macroscopic interference

17 In the case of a simple Bose gas this wave function is called
the Gross-Pitaevskii wave function (OP), in the case of a
Fermi system with s-wave pairing the Ginzburg-Landau
wave function.

effects, of which the best-known is that seen in
the celebrated experiment of [2]. In this experi-
ment 87Rb atoms were independently trapped and
induced to undergo BEC in two different poten-
tial wells separated by a laser barrier so high that
the probability of one atom tunnelling through the
barrier (or surmounting it by thermal activation)
is completely negligible. The barrier was then re-
moved, so that the two atomic clouds could expand
and overlap, and the density distribution studied
by the absorption of a laser beam. The experimen-
tal data are spectacular: on each individual run of
the experiment a pattern of alternating high- and
low-density regions (stripes) is seen, but the offset
(i.e., the absolute position of a given high-density
stripe) varies at random from run to run. This
behavior can be understood qualitatively as fol-
lows: If we had a set of N atoms all condensed
into the same single-particle state, and the latter
were a quantum superposition of states originating
from the left and right well respectively, with a defi-
nite relative phase ∆ϕ (“coherent states”), then we
should expect to see an interference pattern with
an offset which is a linear function of ∆ϕ. In re-
ality, the initial state of the gas is “fragmented”:
we have roughly N/2 atoms in well 1 and another
N/2 in well 2. However, as mentioned above, any
such state can be expressed as a quantum superpo-
sition of a set of coherent states with different ∆ϕ,
and according to the standard quantum theory of
measurement, when we attempt to “measure” ∆ϕ
by looking at the interference pattern, we will pick
out just one member of the superposition, i.e. one
particular value of ∆ϕ. For a detailed discussion,
see QL Chapter 4, Section 5.

Next, let us discuss the Josephson effect. Imag-
ine a single electron which is able to move between
two “boxes” L and R, in each of which it has a
fixed wave function ΨL,ΨR (let us say for definite-
ness the groundstate in the box in question). The
matrix element for tunnelling between the boxes is
to, and a dc voltage V is applied between them.
By writing the total wave function of the electron
in the form

Ψ(t) = a(t)ΨL + b(t)ΨR (|a(t)|2 + |b(t)|2 = 1)
(21)

and solving the Schrödinger equation for the co-
efficients a(t), b(t), it is straightforward to obtain
the result that in the limit eV ≫ to the electric
current between the boxes L and R has the form

I(t) = const. to sin{(eV/~)t + δ} (22)

(when the constant δ is determined by the relative
phase of a and b at t = 0). Note that the derivation
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of this result implicitly assumes that the ground-
state energies EL, ER in boxes L and R are identi-
cal. Were this not the case, or were we to consider a
superposition of (different) excited states in L and
R respectively, then there would be an extra term
added to the argument of the time-dependence in
(22): ėV → eV + ∆E

Now, in the case of two real metals sepa-
rated by (say) a tunnel oxide barrier we have, of
course, many electrons, and in general each elec-
tron (fermion) will occupy a different linear com-
bination of states in L and R: schematically,

Ψ(t) = a(t)ΨLi + b(t)ΨRj (23)

so that the energy ∆E is a function of i and j.
Here we expect for the total current, again very
schematically,

I(t) = const
∑

ij

tij sin {(eV + ∆Eij) t/~ + δij}

(24)

In view of the randomness of the “extra” phases
∆Eijt/~, expression (24) vanishes to lowest order
in tij , and a (considerably more careful) calcula-
tion shows that the correct expression for I(t) cor-
responds to a simple ohmic conductance propor-
tional to |tij |2.

Suppose, however, that we were dealing not with
fermions but with bosons, and the latter are Bose-
condensed. In that case all the condensed par-
ticles would occupy a single one-particle state of
the form (21), and the result (22) would immedi-
ately follow. Although this behavior has not (to my
knowledge) been seen directly in a bosonic system,
effects closely related to it have been known for
many years in liquid 4He, and other related effects
have very recently been seen in alkali atomic gases.
However, the original Josephson effect is seen most
clearly in superconducting metals. In this case it is
not the single electrons but the Cooper pairs which
are in a linear superposition of states in the L and
R boxes: schematically, the “COM pair wave func-
tion” Ψ(R, t) (see eqn. (17)) has the form

Ψ(Rt) = a(t)ΨL + b(t)ΨR (25)

The argument leading to (22) then goes through
exactly as in the single-electron case, with the dif-
ferences that (a) to is replaced by the tunnelling
amplitude for a pair and (b) the single-electron
charge e is replaced by the pair charge 2e. Thus

we obtain the standard result18 for the dc Joseph-
son effect

I(t) = Ic sin{(2eV/~)t+ δ} (26a)

(where Ic is proportional to the pair tunnelling ma-
trix element). The dc Josephson effect is formally
obtained by setting V = 0:

I = Ic sin δ (26b)

where δ is the (time-independent) relative phase of
a and b in (2δ).19

The Josephson effect, as it occurs in classic su-
perconductors, is a consequence of the requirement
that the center-of-mass wave function Ψ(R, t)
(eqn. 17) should be identical for all the Cooper
pairs; since these systems have simple s-wave pair-
ing, the internal structure of the pair is fixed by
the energetics and thus is automatically identi-
cal for all and not readily variable, so it does
not give rise to any particularly interesting effects.
The situation is more interesting in the superfluid
phases of liquid 3He, a system in which the pairs
have nontrivial internal (“orientational”) degrees
of freedom associated with the spins and relative
orbital angular momenta; serendipitously, it turns
out that these orientational degrees of freedom are
controlled only by very weak forces and thus can
show a rich pattern of dynamical behavior. Let
us consider specifically the question: Given that
two 3He nuclei have their spins oriented in (say)
the positive z-direction, what is the optimum rela-
tive orbital configuration? Of course, to the extent
that the Hamiltonian is invariant under relative ro-
tation of the spin and orbital coordinate systems,
the answer is that all orbital configurations are de-
generate. If we now take into account the interac-
tion between the nuclear magnetic dipole moments,
then just as for two macroscopic bar magnets it fa-
vors the “end-over-end” configuration rather than
the “side-by-side” one (see fig. 1); for two nuclei in
a state of definite relative angular momentum, the
corresponding statement is that angular momen-
tum in the xy-plane is favored over that along the
z-axis. However, the energy involved (call it gD) is
very tiny (even at the distance of closest approach
of two 3He atoms it is less than 10−7K), and hence

18 The quantity ∆E can usually be neglected in the limit of
large volumes of the two bulk metals; otherwise, it adds
to the 2eV as above.

19 However, for this result to make sense we need to provide
external leads to prevent accumulation of charge.
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at currently attainable temperatures (>
∼ 10−3K) it

is swamped by the thermal energy, so that in nor-
mal liquid 3He two 3He atoms selected at random
are as likely (to within one part in 104) to be in
the “side-by-side” configuration (ℓ ‖ z) as in the
“end-over-end” one.

“good”

“bad”

FIG. 1: “good” and “bad” relative positions (or rotations)
for two nuclear spins in liquid 3He.

Now let us consider what happens when Cooper
pairs are formed in the liquid. The crucial point is
that, as a result of the “strong” forces in the prob-
lem (kinetic energy and the hard-core and van der
Waals potential energies) all Cooper pairs must be
in the same two-particle state, not only as regards
their center-of-mass behavior but also as regards
their relative behavior, i.e. the relative orientation
of their spins and orbital angular momenta. So
now if we assume that the pairs form with both
spins either parallel (↑↑) or antiparallel (↓↓) to the
z-axis (this is the case for the A phase in an exter-
nal magnetic field along the z-axis, so as to allow
the maximum polarizability), then crudely speak-
ing the system has to choose between having all
pairs having angular momentum along the z-axis,
or all having it in some common direction in the
xy-plane. The difference in energy between these
two configurations is now not gD, but rather NogD,
where No is the “number of Cooper pairs” which
is proportional to N . The resulting energy differ-

ence is ∼ 1020gD and thus very much larger than
the thermal energy kBT , so the system in equilib-
rium will always realize the “good” configuration
(angular momentum in xy-plane): the actual di-
rection within this plane has to be fixed by further
considerations, typically connected with the shape
of the sample.

Rather than fix the spins and ask about the de-
pendence of the energy on the direction of angu-
lar momentum (or equivalently the orbital coor-
dinates) we could of course equally well turn the
question around: that is, we keep the (common) or-
bital coordinates of the pairs fixed and ask about
the dependence of the energy on the spin coordi-
nates. In particular, it turns out that in the so-
called A phase of superfluid 3He the spin structure
of the pair corresponds to total spin S = 1 and
spin projection zero along some axis d (cf. eqn.
(19)), which in equilibrium lies along the (unique
for this phase) direction ℓ of the orbital angular
momentum.20 Now it turns out that if we apply
an external magnetic field H over a timescale so
short that the magnetization of the system has no
time to adjust to it (so that the system is out of
equilibrium), the effect is to rotate not only the
total spin S but also the quantization axis d of the
pairs around the direction of the field. As a result,
the dipole energy is no longer minimized, and the
efforts of the system, as it were, to restore the min-
imum value lead to a rich spin dynamics. In par-
ticular, if H is along the z-axis then d will precess
in the xy-plane, and as we have mentioned20 this
corresponds to a precession of the relative phase
of the ↑↑ and ↓↓ pairs, at a rate governed by the
field21 H . Thus the situation is closely analogous
to that in the simple Josephson effect, with the
spin-up and spin-down populations playing the role
of the electrons in the bulk systems L and R re-
spectively, and since the energy contains a term (in
the present case the nuclear dipole energy) which
is sensitive to the relative phase of the pairs in the
two “regions,” a current is driven between them;
in this case the result is a time-dependent spin po-
larization Sz(t). Indeed, in the limit of high field
(H ≫ ~ωo/µ, where ωo ≡ (NCgD/χ)1/2) we find
the precise analog of the Josephson effect, with the
spin polarization oscillating at the “Josephson fre-

20 A value of d in the xy-plane corresponds to pairing of
↑↑ and ↓↓ with some definite relative phase which is a
function of the direction of d.

21 Or more accurately by its “nonequilibrium part” H −

S/χ, where χ is the static susceptibility.
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quency” 2µH/~ (compare eqn. (26a)). At lower
fields it is necessary to take into account that the
“effective” fieldH−Sz/χ is itself time-dependent22

through Sz(t); the result for small H is a simple
harmonic oscillation at frequency ωo, the so-called
longitudinal resonance.

Because of the three-dimensional nature of the
spin degree of freedom, the longitudinal resonance
by no means exhausts the interesting spin dynam-
ics of the 3He − A phase; the resonance in the
conventional geometry (when the rf field is per-
pendicular to the external one) is also affected. In
the B phase the situation is even more interest-
ing: since in that phase the dipole energy is unaf-
fected by (small) rotations around any axis in the
xy-plane, there is no effect on the transverse res-
onance. However, the dipole energy is effected by
(even small) rotations around the z-axis, and as
a result one gets a spectacular longitudinal reso-
nance. For details see QL, Chapter 6, Section 4.

Let us finally turn to what was for many years
the only obvious (in retrospect!) manifestation
of quantum condensation, and is still perhaps the
most spectacular one, namely the complex of phe-
nomena which goes under the name of superfluidity
(when it occurs in a neutral system) or supercon-
ductivity (when found in the electrically charged
system of electrons in metals). I would like to stress
that both “superfluidity” and “superconductivity”
are indeed a complex of phenomena, which are
commonly found to occur together but do not nec-
essarily do so under all possible conditions; hence,
questions like “what are the necessary and suffi-
cient conditions for superfluidity?” can be ambigu-
ous and misleading in the absence of a precise spec-
ification of exactly which phenomena are included
in the definition.23

The main ingredients in the complex of phenom-
ena known as superfluidity/superconductivity are
two superficially similar but fundamentally very

22 A similar effect (the “Josephson plasma resonance”) can
occur in the superconducting case if the combined L− R
system is open-circuited.

23 In particular, discussions of “superconductivity” in text-
books on elementary particle physics (where it is routinely
invoked as a condensed-matter analog of the Higgs mech-
anism) often give the impression that it is synonymous
with the Meissner effect (on which see below) and/or that
the phenomenon of persistent currents is equivalent to
that effect; this seems to the present author extremely
misleading.

different ones: the metastable phenomenon of per-
sistent currents, and the thermodynamic equilib-
rium effect which in neutral systems is known as
nonclassical rotational inertia (NCRI) or the Hess-
Fairbank effect, and in charged systems is the dia-
magnetism underlying the Meissner effect. It can-
not be overemphasized that while these two phe-
nomena very commonly go together, they are con-
ceptually very different, and neither logically im-
plies the other. I will now attempt to amplify this
crucial point.

It is simplest to consider the annular geometry
shown in fig. 2, when the thickness d of the ring
is small compared to the mean radius R, so that
corrections of order d/R to the formulae obtained
below may be safely neglected. We define a “char-
acteristic quantum unit of angular velocity” ωC by
the formula (m = mass of particles in question)

ωC ≡ ~/mR2 (27)

so that the kinetic energy of angular motion of a
single particle is ℓ2~ωC with ℓ = 0,±1,±2... the
angular momentum quantum number. We now
consider two quite different effects, for the moment
in an electrically neutral system such as 4He:

1. Imagine that we rotate the annular container
very slowly, in fact with an angular velocity
ω < 1

2
ωC . Above the temperature of the

transition to the superfluid state (in the case
of 4He conventionally denoted Tλ) the liquid
will rotate exactly with the container24, so
that its total angular momentum L is Iclω

when Icl ≡ NmR2 is the classical moment of
inertia. However, once the temperature falls
below Tλ the angular momentum decreases
even though the container is still rotating:
we find a temperature-dependent value given
by

L(T ) = fn(T ) Iclω (28)

where the so-called “normal fraction” fn(T )
decreases smoothly from 1 at T = Tλ to 0
at T = 0; thus, at T = 0 the liquid appears
to be stationary in the laboratory frame25

even though the container is still rotating.

24 It will form the usual meniscus, but the effects of this are
of higher order in d/R and can consistently be neglected.

25 Or more strictly (in a suitable geometry) in the frame of
the fixed stars.
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This is the effect usually known as nonclas-
sical rotational inertia (NCRI) or the Hess-
Fairbank effect: it is a true thermodynamic
equilibrium phenomenon, not a consequence
of “vanishing viscosity” (the latter circum-
stance would prevent the liquid from com-
ing into equilibrium with the walls, but once
equilibrium is attained (above Tλ) there is no
way it could cause it to come out of equilib-
rium with them!)

2. Now consider a different experiment: Ini-
tially, we keep the liquid in the normal
phase (T > Tλ) and rotate the container at
some “large” angular velocity ω (typically,
∼ 104ωC); the liquid then comes, just as
would water, into equilibrium with the ro-
tating container. Next, while still rotating
the container at angular velocity ω, we cool
through Tλ. Although we shall see below
that there is, in general, a slight change in the
angular velocity of the liquid (at T = 0 it in
fact rotates at angular velocity nωC , where n
is the nearest integer to ω/ωC), this is of or-
der ωC/ω and typically negligible in practice,
so that to all intents and purposes the liquid
appears, just as in the normal phase, to be
rotating with the container. Now we stop the
container and observe the final state of the
liquid. What we find is that even in the limit
of long times (much longer than any plausible
“relaxation time” for container-liquid equili-
bration) part of the liquid appears to con-
tinue to rotate with angular velocity ω; more
explicitly, the angular momentum L is given
by the formula

L ∼= fs(T )Iclω (29)

where the “superfluid fraction” fs(T ) is re-
lated to the “normal fraction” fn(T ) defined
in connection with eqn. (28) by

fs(T ) = 1 − fn(T ) (30)

By raising and lowering the temperature
(but always staying below Tλ) we can re-
versibly alter the value of L, even though
the container is now stationary. It cannot
be overemphasized that the state we are see-
ing in this experiment cannot possibly be the

thermal equilibrium one26; rather we have an
example of a spectacular degree of metasta-
bility, which I will refer to as the phenomenon
of “persistent currents”.

The above discussion refers to a neutral sys-
tem. In the case of an electrically charged
system it is clear that the description of the
phenomenon of persistent currents is essen-
tially unchanged: a current set up in a super-
conducting loop will persist indefinitely, even
though it cannot possibly correspond to the
equilibrium state of the system. As regards
the NCRI experiment (1) something similar
should occur in a superconducting metal.27

However, what is normally regarded as the
analog of NCRI for a charged system is the
phenomenon of diamagnetism. To introduce
this, we note the fact that the behavior of a
charged system in an applied transverse vec-
tor potential A (or the corresponding mag-
netic field B) with the walls at rest is pre-
cisely analogous to that of a neutral system
when the walls are rotating at angular veloc-
ity ω, provided that the latter is viewed not
from the laboratory frame of reference but
from that of the rotating walls, with the cor-
respondence ω → eB/2m. Thus, in particu-
lar, the analog of the statement that in any
“normal” phase the neutral system rotates
with the walls is the statement that appli-
cation of a magnetic field to a charged sys-
tem in the normal phase will produce no cur-
rent in the lab frame. Conversely, the ana-
log of the statement that in the “superfluid”
phase part of the neutral system is station-
ary in the lab frame (hence moving as viewed
from that of the walls) is that application of
a vector potential to the “superconducting”
system results in a non-zero current, whose
sign is diamagnetic, i.e. such that the result-
ing field tends to screen out the external one.
The quantitative statement of this effect, first
written down by F. London, is

J = − ∧ (T )A (31)

∧(T ) = (ne2/m)fS(T ) (32)

26 In fact, it is easy to demonstrate that in the considered
geometry the maximum possible value of the angular mo-
mentum in equilibrium with walls stationary is IclωC/2.

27 But in a bulk geometry is complicated by the Meissner
effect (see below).
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when n is the density of electrons and fS(T )
the superfluid fraction (which, of course,
need not be numerically the same function
of temperature as in the neutral case (since
in general the microscopic nature of the sys-
tems is different), but retains the property
that fS(0) = 1 and fS → 0 at the transi-
tion to the normal phase). When combined
with the familiar Maxwell’s equations. Eqn.
(31) leads to the Meissner effect : an exter-
nally applied magnetic field will be screened
out of the body of a superconducting metal
over a length scale of the order of the London
penetration depth λL given by

λ−2
L = ne2µo/m (33)

λL is typically ∼ a few hundred Å, so that
from a macroscopic point of view it looks as
if the superconductor is excluding the mag-
netic field entirely. The Meissner effect can in
some sense be regarded as the familiar phe-
nomenon of atomic diamagnetism writ large;
in the atomic case, while the qualitative be-
havior is identical, the length corresponding
to λL is very large compared to the atomic
dimension, so that the residual analog of the
Meissner effect is a weak (∼ 10−5) attenu-
ation of the magnetic field actually seen by
the nucleus by comparison with that applied
externally to the atom.

FIG. 2: Annular geometry for discussion of NCRI and per-
sistent currents.

Let’s now discuss how the two conceptually very
different phenomena (1) and (2) are explained by
the onset of quantum condensation. In the case
of NCRI it is simplest to start with the case of
a free Bose gas, where all the calculations can be
carried out explicitly. The essential point is that
when a system is in equilibrium with walls rotating

at angular velocity ω, the effective Hamiltonian
which governs the statistical distribution is not the
original Hamiltonian Ĥ , but rather the quantity

Ĥeff = Ĥo − ω · L̂ (34)

where L̂ is the angular momentum operator. Thus,
in particular, the “effective” kinetic energy of an-
gular motion of a particle with angular momentum
quantum number ℓ is

Eeff (ℓ) =
ℓ2

2
~ωc − ~ωℓ (35)

Consider first the normal (i.e. non-Bose con-
densed) phase. In the Maxwell-Boltzmann limit
the distribution of particles between the different
ℓ-values is given simply by

nℓ(T ) = c(T ) exp−

(

ℓ2

2
~ωc − ~ωℓ

)

/kT (36)

where the constant is such that

∑

ℓ

nℓ(T ) = N (37)

The total angular momentum is given by the for-
mula

L = ~

∑

ℓ

ℓnℓ(T ) (38)

In evaluating expression (38) it is important to
bear in mind that under all experimental condi-
tions attained to date (or likely to be attained in
the foreseeable future) the rotational energy quan-
tum ~ωC is very small (typically ∼ 10−7) relative
to the thermal energy kBT . This justifies the re-
placement of the sum in (38) by an integral, and
we easily find

L = N~(ω/ωc) ≡ Iclω (39)

The liquid therefore rotates exactly with the con-
tainer, as expected (fig. 3a). At lower tempera-
tures (but still above the BEC onset temperature
Tc) the argument needs to be modified somewhat
(since the Bose distribution, unlike the MB one,
does not allow us to factor out the dependence on
ℓ), but the result is the same.

Now consider the behavior in the BEC phase
(T < Tc). While the uncondensed particles con-
tinue to behave as in the normal phase, the conden-
sate must form in the (unique) single-particle state
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with the lowest effective energy, namely, with the
ℓ-value which minimizes expression (35)28. This is

ℓo ≡ int. (ω/ωc − 1/2) (40)

and the resulting contribution to the angular mo-
mentum is Nfo(T ) ~ℓo, where fo(T ) = No(T )/N
is the condensate fraction at the temperature in
question. Thus the total angular momentum at
temperature T is given by

L = (1 − fo(T ))Iclω + fo(T )Iclℓoωc (41)

In particular, for ω < 1
2
ωc we have ℓo = 0 and thus

L = (1 − fo(T )) Icl ω (42)

This is just the phenomenon of NCRI as given by
eqn. (28), with the “normal fraction” fn(T ) identi-
fied with the “non-condensed fraction” (1−fo(T )).
For general ω we expect the L(ω) relation to be
given by the pattern of fig. (3b) (which is drawn
for simplicity for the case T = 0).

It is now easy to see intuitively how the argument
will go for the more physically realistic case of an
interacting Bose system such as liquid 4He, or for a
Fermi system such as the electrons in metals. Since
the “wave function” of the condensate, or equiva-
lently the order parameter (see eqns. (9) and (15))
is essentially nothing more than the Schrödinger
wave function of a single particle (or in the Fermi
case the center-of-mass wave function of a pair
of particles) it must obey the standard “single-
valuedness boundary condition” (SVBC); that is,
when we take the particle (pair) once around the
ring and bring it back to its starting point, the
phase of the wave function can have changed only
by a multiple of 2π (including of course zero). For a
cylindrically uniform geometry this means that the
angular dependence of the condensate wave func-
tion will be simply of the form

Ψℓ(Θ) = const. exp iℓθ ℓ = 0,±1, ±2... (43)

where θ is the angle around the annulus as in fig.
2. Thus the single-particle energy is again given
by eqn. (35), and if we assume that just as in the
noninteracting case the condensate forms in the
state with the lowest value of this energy we find
that the equilibrium value ℓo of ℓ is again given

28 and has the lowest value of the “transverse” kinetic en-
ergy, which is not explicitly considered in the above ar-
gument.

FIG. 3: Behavior of a system in the geometry of Fig. (2)
when container is rotated with angular frequency ω.

(a) Normal system.
(b) System with BEC at T = 0.

(At nonzero T < Tc, the horizontal lines are tilted around
their centers at an angle < 45◦.)

by (40). However, we can no longer necessarily as-
sume that in this state the angular momentum is
simply No(T )~ℓo, since the condensate may “drag”
some of the noncondensed particles with it. If
we denote the sum of No(T ) and the number of
“dragged” particles by NfS(T ), we find (cf. eqn.
(41))

L = (1 − fS(T ))Iclω + fS(T )Iclωcℓo (44)

which agrees with (28) when ω < ωc (cf. (30)).
In real-life liquid 4He, the value of the condensate
fraction No/N ≡ fo is believed to be only ∼ 10%
at T = 0, while by contrast fS(T = 0) = 1. If we
know the excitation spectrum of the liquid, then a
famous argument originally due to Landau allows
us to calculate fn(T ) (thus fS(T )); see QL Chapter
3, Section 6.

Arguments similar to the above can be applied
to the case of an electrically charged system: in
that case the analog of the condition ω < 1

2
ωc is
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that the total magnetic flux through the ring is
less than half the “superconducting flux quantum”
h/2e, and under these conditions the induced cur-
rent is given by eqn. (31). For more general values
of flux, the expression is

J =
∧(T )

2πR2
Fr (Φ/Φo) (45)

where “Fr” denotes the fractional part (i.e. the
(algebraic) distance to the nearest integer); evi-
dently this reduces to (31) where |Φ/Φo| < 1/2.
For a discussion of the phenomenon of “flux quan-
tization” which is implied by this result, see QL ch
5 section (5.6).

We now turn to the question of metastability of
supercurrents. It should be emphasised that (con-
trary to the impression sometimes given in the
literature) the existence of NCRI is not a suffi-
cient condition for such metastability; indeed, as
we shall see below, the free Bose gas possesses the
former property but not the latter. Let us sup-
pose that by the method described above we have
set up a persistent current in our examples. Ac-
cording to the above arguments this corresponds to
having formed the condensate in the single-particle
state with angular momentum quantum number
ℓo = int.(ω/ωc − 1/2) 6= 0 (where ω was the an-
gular velocity of the container as we cooled from
the normal phase into the BEC phase). When we
stop the container, the normal component comes
to rest, but the condensate persists in the state
ℓo, and since it continues to “drag” some noncon-
densed particles the total angular momentum is
NfS(T )ℓo~. As we have seen, this angular mo-
mentum can be changed reversibly by varying the
temperature while always staying below Tλ, which
indicates that under this condition the condensate
persists indefinitely in the state ℓo.

Why can the condensate wave function not
evolve from this state (χo ∼ eiℓθ) to the ground
state form (χo ∼ const.)? After all, an electron in
an atom which is initially in an ℓ 6= 0 state (say
a p-state) has no particular difficulty in decaying
to the ℓ = 0 state, and at first sight the problem
is similar. Indeed, a free Bose gas would behave
in a way similar to the electron, and thus show
no metastability of supercurrents. However, let us
examine the process involved a little more closely,
taking for definiteness the case ℓo = 1 (though in
real life it is likely to be ≫ 1). Suppose we try the
ansatz (which would be a good description of the
atomic transition in the approximation that the
radiation field is described classically):

χo(t) = a(t)ψp + b(t)ψS , |a(t)|2 + |b(t)|2 = 1,

a(−∞) = b(∞) = 1 (46)

where apart from their common normalization

ψS = 1, ψp = exp iθ (47)

If we now calculate the density of (condensate) par-
ticles, ρ(θ), as a function of t, we see that

ρ(θ : t) = 1 + 2 Re
{

a∗(t)b(t)eiθ
}

(48)

i.e. it is nonuniform in space, and in fact must have
a zero at some point on the ring at some interme-
diate time. Now, for the electron in the atom, and
equally for the free Bose gas, the energy is simply
(proportional to) the expression

E(t) = |a(t)|2 Ep + |b(t)|2ES (49)

and is uniformly decreasing with a(t); this is a con-
sequence of the linearity of the Schrödinger equa-
tion. In the case of an interacting system such as
liquid 4He, however, there is a crucial difference:
there is also a term in the (free) energy propor-
tional to |χo(r)|4, or equivalently to |Ψ(r)|4, with
a positive coefficient; cf. eqn. (20). It is easy to
verify that in the annular geometry under discus-
sion this term is proportional to the expression

∫

(ρ(θ : t))2d θ (50)

which for a ρ(θ : t) of the form (48) contains a term
2|a(t)|2 · |b(t)|2. This term is zero in the (spatially
uniform) initial and final states, but has a nonzero
positive value in intermediate states, reaching a
maximum value of 1. Thus, if the coefficient of
this term is large enough compared to Ep − Es

(which is almost invariably the case in a realistic
geometry for small ℓo, except extremely close to Tc)
this term provides an energy barrier against decay
of the circulating-current state; since in practice
this energy barrier is very large compared to kBT ,
thermal fluctuations cannot overcome it, and the
circulating-current state persists indefinitely.

To put it in a formally different but equivalent
way, the “winding number” ℓ is a topological in-
variant ; it is impossible to go continuously in an
annulus from the state ℓ = ℓo(6= 0) to the state
ℓ = 0 without depressing the amplitude of the con-
densate wave to zero for some value29 of θ, and as

29 This argument implicitly assumes that χo (or Ψ) is con-
stant over any plane of constant θ. If we relax this as-
sumption, further possibilities arise but the energy barrier
is still large: see QL Chapter 3, Section 5.
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indicated this costs a large amount of energy. How-
ever, it is crucial to note that this argument only
works because the order parameter we are consid-
ering is, as in superfluid 4He, a complex scalar
quantity. For more sophisticated forms of order pa-
rameter, such as that believed to characterize the
orbital states of 3He−A, the topological argument
is no longer valid: it turns out that it is possible to
change the winding member by multiples of 2 with-
out introducing any nodes, indeed while maintain-
ing its amplitude at the original value everywhere.
Thus in an ideal world, where one could neglect
the primary effects of boundaries etc., while the
ℓ = ±1 states of 3He− A in an annular geometry
would be “marginally” metastable, all other ℓ 6= 0
states would be unstable against decay: see e.g.
QL section 6.5. This shows rather dramatically
that “broken symmetry” by itself cannot explain
all the phenomena of superfluidity.

5. Conclusion

The basic message of this paper has been that
the occurrence of quantum condensation is a suffi-

cient condition to explain most of the anomalous
properties of superfluid systems, although in some
cases, such as the metastability of supercurrents,
it needs to be supplemented with other considera-
tions such as the topological properties of the con-
densate wave function. It is a different, and very
interesting, question whether quantum condensa-
tion is a necessary condition for all or some of these
phenomena to occur; existing theoretical results on
two- and one-dimensional systems tend to indicate
that it is not, and some further intriguing possibil-
ities are raised by recent experiments which sug-
gest the occurrence of NCRI in solid 4He: see QL
Chapter 8, Section 3. Unfortunately there is no
space to discuss these questions here.
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