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An investigation is presented to study the propagation properties of low frequency ion-acoustic shocks in quantum plasma whose 

constituents are electrons (inertialess), positive ions and negatively charged dust grains both mobile. The Quantum hydrodynamic 

(QHD) model has been considered to investigate dust-ion acoustic shock structures in two-fluid quantum plasma. The reductive 
perturbation technique is employed to derive the Korteweg–de Vries–Burgers (KdV-B) equation whose solution has the form of 

shock structures and in the limiting case, solitons structures are observed. The combined effects of variation of different p hysical 

parameters on the characteristics of DIA shock and solitary structures are analyzed. The time evolution analysis of DIA shocks has 

also been carried out to see the occurrence of monotonic as well as oscillatory shocks in the given quantum plasma system. The 

results of present investigation may be useful in the understanding of fundamental plasma phenomenon in an astrophysical plasma 

environment. 

 

  

1. Introduction 

  

In quantum plasmas, the mean particle distance of 

species (say electrons/ions) is similar to the de-Broglie 

wavelength associated with the charged particles or 

smaller than it. Further, it is believed that in plasma 

Fermi temperature surpasses temperature of the system 

and such type of particles act like Fermi gas. A number 

of observations have confirmed that dust is ubiquitous 

component in most of the space/astrophysical and 

laboratory environments  [1]. The presence of dust in e-i 

plasma generates new kinds of modes including dust 

acoustic as well as dust-ion acoustic modes. The study 

of linear and nonlinear dust acoustic (DA) as well as 

dust ion acoustic (DIA) waves has been frontline area 

of research in d ifferent plas ma environments for the last 

more than four decades. [2-6]. 

 

Numerous investigations to s tudy linear and nonlinear 

excitations (solitons, double layers, rogue waves etc.) in 

different kinds of quantum plasma environments in the 

framework of perturbative as well as many non-

perturbative approaches have been reported. [7-13]. 

Nonlinear DA waves in co llisionless, ultracold quantum 

dusty plasma consisting of inertialess electrons and 

ions, and inertial dust has been studied by Ali & Shukla 

(2006). It was reported that quantum corrections has 

significantly affected the nonlinear p roperties 

(amplitude and width) of DA waves. Misra (2009) 

studied dust ion- acoustic  

 

shocks in quantum dusty pair-ion p lasmas. Masood et 

al. (2007) reported the linear and nonlinear properties of 

dust ion-acoustic waves using the two fluid quantum 

hydrodynamic model (QHD). It was observed that 

different parameters (quantum corrections and 

concentration of the dust particles) great ly influence the 

properties of DIA waves. Shock structures in the 

plasma system are formed due to the balance of 

different effects (nonlinear, dispersion, dissipation). 

Among different kind of nonlinear structures, 

researchers have also reported various kinds of 

investigations on the study of shock waves in the 

framework of d ifferent kinds of particle velocity 

distributions in different environments of plas ma [14-

19]. 

 

Over the last many years, a  large number of 

investigations to study the characteristics of shocks in 

different kinds of mult i component quantum plas ma 

have been reported [20-22]. Misra (2009) addressed the 

requirement for the formation of DIA oscillatory and 

monotonic shocks in quantum dusty pair-ion plasma. 

Rouhani et al. (2014) reported the character- istics of IA 

shock waves in quantum pair plas ma with  dust 

particulates. It was observed that the quantum 

parameter, dust density and dissipation parameter have 

significant influence on the existence of monotonic and 

oscillatory shocks. Owing to the importance of quantum 
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plasmas as well as the role of dust and applications of 

shocks in different areas motivates to study the shocks 

in two-flu id quantum plas ma.  In  present investigation, 

we consider a two-flu id QHD model to study the 

nonlinear dust ion-acoustic (DIA) shock waves in an 

unmagnetized, collision less, three component electron-

ion- dust (e-i-d) quantum plas mas. Using the reductive 

perturbation technique, we have derived the Korteweg–
de Vries-Burgers (KdV-B) equation by incorporating 

the quantum-mechanical behavior in electrons and ions. 

Time evolution of shock waves of oscillatory shocks at 

later t imes which arises due to nonlinearity has also 

been studied. The manuscript is organized in the 

following manner. In Sec. 2, the governing model 

equations are presented. In Sec. 3, the derivation and 

solution of the KdV-Burgers equation are discussed in 

detail. Sec. 4 presents the numerical analysis. Sec. 5 is 

devoted to the conclusions of the findings. 

 

2. Basic Equations 

 

To study the nonlinear properties of DIA shocks in 

quantum plasma, we consider inertial dust as well as 

ions and non-inertial quantum electrons. The set of 

normalized  fluid equations (continuity, momentum and 

Poisson) to study the dynamics of DIA shock waves are 

written as: 

For dust: 

Continuity equation:                𝜕𝑛𝑑𝜕𝑡 + 𝜕(𝑛𝑑 𝑣𝑑)𝜕𝑥 = 0 

                                                                                    (1) 

 

Momentum equation: 𝜕𝑣𝑑𝜕𝑡 + 𝑣𝑑 𝜕𝑣𝑑𝜕𝑥 = 𝜇𝑑 𝜕𝜑𝜕𝑥 + 𝛼1𝜂𝑑 𝜕2𝑣𝑑𝜕𝑥2  

                                                                               (2) 

For ions: 

Continuity equation:  𝜕𝑛𝑖𝜕𝑡 + 𝜕𝑛𝑖𝑣𝑖𝜕𝑥 = 0 

                                                                               (3) 

 

Momentum equation: 

𝜕𝑣𝑖𝜕𝑡 + 𝑣𝑖 𝜕𝑣𝑖𝜕𝑥 = −𝜕𝜑𝜕𝑥 + 𝐻𝑖22 𝜕𝜕𝑥 ( 
𝜕2√𝑛𝑖𝜕𝑥2√𝑛𝑖 ) + 𝜂𝑖 𝜕

2𝑣𝑖𝜕𝑥2  

                                                                                  (4)      

The equation for inertialess electrons: 

 

0 = 𝜕𝜑𝜕𝑥 − 𝑛𝑒 𝜕𝑛𝑒𝜕𝑥 + 𝐻𝑒22 𝜕𝜕𝑥 ( 
𝜕2√𝑛𝑒𝜕𝑥2√𝑛𝑒 )     

                                                                                 (5) 

The Poisson’s equation: 

 𝜕2𝜑𝜕𝑥2 = 𝜇𝑛𝑑 + (1 + 𝜇)𝑛𝑒 − 𝑛𝑖  
                                                                               (6) 

                                                                               

The coordinates (space and time)  are normalized by 

the Debye length λd= √2KBTFe4πni0 e2  and inverse of ion 

plasma frequency  ωpi = √4πni0e2mi  respectively. The 

electrostatic potential ϕ is normalized  by 2κBTFe/e. 

The fluid velocity vj (j = i, d) is normalized by the ion 

sound speed Csi = (2κBTFe/mi)
1/2

. The ratio of 

unperturbed dust density to unperturbed ion density is 

defined as δ = zd0nd0/ni0, zd is the charge number of 

the negatively charged dust, δd = zd0mi/md and θ = 

TFi/TFe are the ion to dust mass ratio and ratio of ion 

to electron Fermi temperature respectively. The non-

dimensional quantum parameter H for electrons and 

ions are defined as 𝐻𝑒 = √𝜔𝑝𝑖ℎ2/𝑚𝑒𝑚𝑖 𝐶𝑠𝑖4  and 𝐻𝑖 = √𝜔𝑝𝑖ℎ2/𝑚𝑖2𝐶𝑠𝑖4  respectively. The dust and ion 

kinemat ic viscosities arising due to dust–dust and ion-

ion collisions are normalized by λ2
Dini0miωpi and α1 = 

mini0/mdnd0. We assume that the electrons in plasma 

obey the one-dimensional pressure law [23]  

 𝑝𝑒 = 𝑚 𝑣𝐹𝐸2  3𝑛𝑒𝑜2 𝑛𝑒3                                                                                     (7) 

 

Where, me is the mass, vFe = √2KBTFe   mi is the Fermi 

speed, κB is the Boltzmann constant, and TFe is the 

Fermi temperature. Furthermore, ne is the number 

density with 
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its equilibrium value ne0. At equilibrium, the charge 

neutrality condition is ni0 = ne0 +Zd nd0. Integrating Eq. 

(5) with boundary conditions ne = 1 and ϕ = 0 at  x → ±∞  we get[12], 

 

𝜑 = 12 𝑛𝑒2 + 𝐻𝑒22 ( 
𝜕2√𝑛𝑒𝜕𝑥2√𝑛𝑒 ) − 12 

                                                                              (8)  

 

 

3. Derivation of the KdV-burger equation 

 

In order to derive the KdV-Burgers (KdV-B) equation 

for the DIA shock waves for two  fluid quantum plasma, 

we have employed reductive perturbation method with 

stretching coordinates as ξ = ϵ1 2⁄ (x − Vt) and τ = ϵ3 2⁄ t 
.For the case of weak damping, the kinematic v iscosity 

at arises due to dust–dust and ion-ion collisions can be 

considered small but finite. We assume that  

                 

 

 

Where ηi,d0  is a parameter having  finite value. Due to 

the minute value of η, we can use the same scaling 

factor as used for wave amplitude, i.e., ϵ for its scaling. 

We have considered the scaling of η for dust and ions in 

such a way that it gives significance only in dissipative 

term and hence, not showing any impact in nonlinear 

and dispersive terms. This is  the magnificence of 

reductive perturbation method otherwise the 

involvement of d issipation in the wave dynamics may 

be absurd. The dependent physical quantities nj , vj 

(j=i,d) and ϕ are expanded about their equilibrium 

values in a power series  as:  𝑛𝑗=1 + 𝜀𝑛𝑗1 + 𝜀2𝑛𝑗2 + ⋯ 𝑣𝑗=1 + 𝜀𝑣𝑗1 + 𝜀2𝑣𝑗2 + ⋯ 𝜑 = 𝜀𝜑1+ 𝜀2𝜑2 + ⋯ 

                                                                              (9) 

                                            

Using stretching coordinates and Eq. (9) in Eqs. (1) - 

(6) and collecting terms of lowest order in ϵ, we obtain: 

 𝑛𝑑1 = − 𝛿𝑑𝑉2 𝜑1,     𝑣𝑑1 = −𝛿𝑑𝑉 𝜑1 ,     𝑛𝑒1 = 𝜑1 

 𝑛𝑖1 = 𝜑1𝑉2 ,      𝑣𝑖1 = −𝜑1𝑉  

                                                                                 (10) 

And 𝛿𝑛𝑑1 + (1 − 𝛿)𝑛𝑒1 − 𝑛𝑖1 = 0 

                                                                                 (11)     

  

 From first order equations with small analytical 

calculations, the following dispersion relation of the 

DIAWs is obtained 𝑉 = (1 + 𝛿𝛿𝑑1 − 𝛿 )12 

                                                                                (12) 

From this equation, it  is observed that phase velocity 

increases with increase in  dust to ion density ratio δ. 

After tedious algebraic calculations, the following 

KdV-Burgers equation is determined as:  

 𝜕𝜑1𝜕𝜏 + 𝐴𝜑1 𝜕𝜑1𝜕𝜉 + 𝐵 𝜕3𝜑1𝜕𝜉3 = 𝐶 𝜕2𝜑1𝜕𝜉2  

                                                                                (13) 

where, the nonlinear coefficient   

 𝐴 = (1 −𝛿)𝑉4 + 3(𝛿𝛿𝑑2 − 1)2(1 + 𝛿𝛿𝑑)𝑉  

                                                                                (14)             

dispersive coefficient 𝐵 = (𝐻𝑖2 + 𝐻𝑒2(1 − 𝛿)𝑉4 − 2𝑉4 )4(1 + 𝛿𝛿𝑑)𝑉  

                                                                                   (15) 

and dissipation coefficient 𝐶 = 𝜂𝑑0𝛿𝛿𝑑 +𝜂𝑖02(1 + 𝛿𝛿𝑑)  

                                                                                  (16)            

 

 
Fig. 1. (Color online) The variation of width W of 

shock structures with dust to ion density ratio  δ (= nd0 

ni0 Zd) for d ifferent values of quantum electron  Bohm 

potential (He) and ion kinematic v iscosity (ηi0). For 

solid (Red) curve; He = 0.6 and  ηi0= 0.3, dashed (Blue) 

curve; He = 0.7, dot-dashed (Black) curve; ηi0= 0.4, 

with fixed values of parameters ηd0= 0.5 and Hi  = 1.0 

0,
2

1

, didi  
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To examine the shock-like analytical solution of 

KdV–B Eq. (13), the tanh-method is employed to 

determine the shock solution of KdV–B equation as 

[24]  

 𝜙1(𝜉, 𝜏) = 𝜑𝑚𝑎𝑥 [1 − 14 [1 + tanh (𝜉 − 𝑉𝜏𝑊 )]2] 
                                                                              (17) 

 

Where, 𝜙𝑚𝑎𝑥 = 12𝐶225𝐴𝐵 ,      𝑊 = ∇−1= 10𝐵𝐶 ,   𝑢 = 6𝐶 225 𝐵 

 

 

 
Fig.2. (Color online) The variation of shock wave 

profile ϕ with ξ For solid (Red) curve; δ = 0.75 and 

ηi0 = 0.3, dashed (Blue) curve; δ = 0.8, dot-dashed 

(Black) curve; ηi0 = 0.4, with fixed values of 

parameters as in Fig. 1. 

 

 

4. Results and discussion 

 

Owing to the dependence of nonlinear coefficient A, 

dispersion coefficient B and dissipation coefficient C on 

the various physical parameters, we have numerically 

analyzed the behavior of DIA shock waves in quantum 

dusty plasma from the KdV-Burgers Eq. (13) and its 

solution given by Eq. (17). The solution of KdV-B 

equation shows explicit dependence upon various 

physical parameters such as quantum electron Bohm 

potential (He), ratio  of dust to ion density ratio (δ) and 

kinemat ic v iscosity of ions (ηi0). From Eq. (12), it  is 

seen that the phase velocity of DIA shock waves 

increases with the ratio of dust to ion density ratio δ. It 

is inferred that the shock waves tend to travel faster as 

the ratio of dust to ion density is increased. The 

dissipation term that appears due to kinematic v iscosity 

in KdV-B equation leads to the variation of the width of 

shock structures. Fig. 1 illustrates the variation of width 

of shock structures with ratio  of dust to ion density ratio 

(δ) with different values of quantum electron Bohm 

potential He  and also along with ion kinemat ic v iscosity 

increases with increase in dust to ion density ratio δ and 

with increase in quantum electron Bohm potential He. 

Contrast effect is seen for the variat ion of ion kinemat ic 

viscosity ηi0 i.e., width decreases with increase in the 

value of ηi0. There is competition between dissipation 

and dispersive effects via coefficients C and B 

respectively. With increase in δ and He, dispersion 

coefficient B increases while C decreases which leads 

to increase in the width of shock structures. Fig. 2 

presents the variation of shock profile with dust to ion 

density ratio (δ) and ion kinemat ic viscosity (ηi0), it is 

inferred that with increase in δ, the amplitude of shock 

structures decreases and with increase in the ηi0, the 

amplitude of the shock structures is enhanced. It is 

remarked that a more v iscous ion fluid  supports the 

formation ηi0. It is observed that the width of shock 

structures 

 
Fig.3. The variat ion of shock wave profile ϕ with ξ 

For solid (Red) curve; He = 0.6, dashed (Blue) curve; 

He = 0.7, dot-dashed (Black) curve; He = 0.8 for fixed 

values of parameters as ηd0 = 0.5, ηi0 = 0.3,Hi = 1.027 

and δ = 0.5. 

 

of shocks of higher amplitude. Fig. 3 shows that for 

increase in the value of He, there is decrease in the 

amplitude of shock waves. In order to investigate the 

time evolution of the shock-like solution of the KdV-

Burgers equation, we use a MATHEMATICA based 

fin ite difference scheme to numerically simulate Eq. 

(13). We consider the shock-like pulse as initial 

waveform with appropriate boundary conditions as: 

 𝑦(0, 𝜉) = Δ𝑖𝑛𝑖 (1 − tanh(𝑘0𝜉)), 𝜉 ∈ (−𝐿, 𝐿)         (18) 

 

Where, L depicts the spatial length and △ini is the 

shock amplitude.  The boundary conditions used are 

y(τ, ξ) = △ini(1+ tanh(k0 L)) and ϕ1(τ,L) = 0. Fig. 4 
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illustrates the evolution of oscillatory shock waves 

with parameters as He = 0.2, ηi0 = 0.3 and δ = 0.6. It is 

inferred that the initial shock-like pulse develops an 

oscillatory tail with increase in the amplitude, i.e., as 

time evolves, the dispersive effect tends to overpower 

the plasma dynamics and with the balance between 

the nonlinear, dispersive and dissipation effects, a 

monotonic shock transforms into an oscillatory shock 

profile. Fig. 5 illustrates the oscillatory shock wave 

profile for different value of δ, ηi0 and He.  

 

 
Fig. 4. The variat ion of oscillatory shock wave profile 

ϕosc with ξ at different values of time The parameters 

being He = 0.2, ηi0= 0.3, ηd0= 0.5, Hi = 1.027 and δ = 

0.6. 

 

 

 
Fig. 5. The variat ion of oscillatory shock wave profile 

ϕosc with ξ for different values of δ, ηi0 and He  

It is observed that the amplitude of oscillatory shocks 

decreases with increase in  δ (see Figs. 5(a) and (b)), 

In Figs. 5 (c) and (d), the variation of ϕosc is depicted 

for d ifferent values of ηi0 and observed that ϕosc also 

decreases with increase in ηi0. Figs. 5 (e) and (f) 

depict the variation of ϕosc with change in He. The 

amplitude of shocks also decreases with enhancement 

in the value of He. It is emphasized that the dispersive 

effects become less effective and the monotonic 

character of the shock wave is retained for the longer 

time. It  is revealed that monotonic shock structures 

are more stable as the quantum electron Bohm 

potential He is increased. Hence, all the plasma 

parameters have significant influence on the time 

evolution of nonlinear shock structures in quantum 

dusty plasma. 

 

5. Conclusions 

 

Nonlinear properties of low frequency ion acoustic 

shock waves propagating in an electron-dust-ion plasma 

with two-flu id quantum hydrodynamic model (QHD) 

are investigated. By employing the reductive 

perturbation technique, the one-dimensional KdV-B 

equation has been derived. Further solution of KdV-B 

equation is determined to highlight the effect of 
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quantum electron Bohm potential, dust to ion density 

ratio and ion kinemat ic viscosity on the characteristics 

of DIA shock waves. Increase in the quantum electron 

Bohm potential and dust to ion density ratio tends to 

reduce the amplitude of the shocks and increase in  ion 

kinemat ic v iscosity tends to enhance the amplitude of 

shocks. Further, the time evolution o f the shock waves 

is also studied as a numerical solution of KdV-Burgers 

equation. It is observed that an initial shock like pulse 

forms a oscillatory shock profile for lower values of 

different parameters such as dust to ion density ratio δ, 

ion kinemat ic viscosity (ηi0) and quantum electron 

Bohm potential (He) and the monotonic shock structures 

are obtained with increase in the value of δ, ηi0 and He. 

The results of this investigation may be important fo r 

the understanding of shock wave propagation in dense 

astrophysical environments such as those occurring in 

the interior of giant planets or dwarf and neutron stars. 
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