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The theoretical investigation of double-layer structures in a dense, quantum plasma containing electrons, ions, and mobile 

dust particles, has been carried out. A linear dispersion relation is derived for the corresponding Dust -Ion Acoustic Waves. 

We have considered the collisions to be absent. Furthermore, with the help of a standard reductive perturbation technique and 

using the one–dimensional quantum hydrodynamic ( QHD ) model, an Evolutionary profile formation of  Ion Acoustic 

Waves with mobile dust particles in a dissipative, dispersive medium has been examined in a 3 – component ultra – 

relativistically degenerate super dense quantum plasma and analyzed numerically. The relativistic effects significantly alter 

the linear and non–linear properties of Dust-Ion plasma waves. The importance of the results of the studies of both linear and 

non-linear characteristics and their parametric dependence studied graphically, have also been pointed out. 

 

 

1. Introduction  

The investigation of linear and non-linear 
phenomena in various media is the thrust area of 
research in science and technology. Ion acoustic 
waves (IAW) and Electron acoustic waves (EAW) 
with two and mult i-component plasmas are being 
studied continuously for the last four decades. The 
emergence of relativ istic and quantum effects in 
plasmas unfolded a new d imension in  the studies of 
solitary waves. Space plasmas have created vast 
interest among the plas ma workers due to the 
occurrence of dust particles. Th is interest is large 
because the presence of particles significantly alters 
the charged particle equilibrium lead ing to different 
phenomena. 

    A p lasma that contains millimetre (10−3) to 
nanometre (10−9) sized  suspended particles is 
called dusty plasma. Dust particles are charged. The 
study of plasmas with this charged dust particles 
creates an additional complexity, therefore dusty 
plasmas are also known as complex p lasmas. 
Astrophysical environments such as in interstellar 
medium, in cometary tails, in asteroid zones, in 
planetary rings, in the earth’s magnetosphere, in  the 
neighbourhood of stars [1], [2], and radiofrequency 
discharge contain abundant dusty plasma. After a 
lot of bewilderment, scientists realized that the 

spokes of Saturn were possibly minute specks of 
dust moving around the rings because of the electric 
and magnetic forces which result from electrically 
charged gases known as plasma. The damping 
source to dust acoustic waves is the fluctuation in 
the dust charge. 
    Again, the physics of quantum plasmas is now a 
very rapidly growing subject of plasma physics. 
Various linear and nonlinear properties of plas ma 
waves are significantly altered by quantum effects 
observed in white dwarfs and neutron stars . The 
quantum hydrodynamic (QHD) model, is derived 
from the Wigner equations by taking velocity space 
moments, generalizes the classical fluid model for 
plasma with the inclusion of a quantum correction 
term also known as the Bohm potential [3].  
    The QHD model has been widely used by several 
authors [4-8] because of simplicity, straight forward 
approach, and numerical efficiency. The role of 
quantum d iffraction  in  the propagation of ion-
acoustic waves has been investigated by Haas et al 
[9]. The linear d ispersion character of 
compressional magneto-acoustic waves in a 
quantum magneto-plasma has been studied by 
Shukla [10] by taking into account the quantum 
Bohm potential and the magnetization of electrons 
owing to electron spin effects.  

https://en.wikipedia.org/wiki/Charged_particle_equilibrium
https://en.wikipedia.org/wiki/Plasma_(physics)
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In some p lasmas, the part icle velocit ies may 
become very h igh; and in some cases, it may  even 
approach the speed of light and therefore it 
becomes important to consider the relativistic 
effects for such plasmas. Relativistic plasmas can 
be formed in many practical situations such as in 
white dwarfs, plasma phenomena [11], the plasma 
sheet boundary of Earth’s magnetosphere [12], Van 
Allen radiation belts [13], and laser plas ma 
interaction experiments [14]. The degenerate 
electron number density is extremely high in such 
compact objects which results in the electron Fermi 
energy being comparable to the electron  Mass 
energy and the electron speed being comparable to 
the speed of light in a vacuum. The equation of 
state for these degenerate electrons in such 
interstellar compact objects is mathematically 
explained by Chandrasekhar fo r two limits, namely, 
non-relativistic and ultra-relativistic limits. The 
degenerate electron equation of state of 
Chandrasekhar is Pₑ for the ultra-relat ivistic limit, 
where Pₑ is the degenerate electron pressure and n  e
is the degenerate electron number density. So we 
can study these compact objects at extremely high 
densities (degenerate state) for which quantum, as 
well as relativistic effects, become important. 
Elementary electrodynamics shows us that charged 
particles can never be accelerated by magnetic 
fields. Electric fields are necessary, either 
electrostatic or induced by time vary ing magnetic 
fields. Since energetic electrons and ions are often 
seen in plasmas, it is important to realize the 
mechanis ms that can generate and maintain 
magnetic fields in plas mas. Many such mechanis ms 
have been discussed by Block and Fälthammar 
(1976). One of these mechanisms is the Double 
Layer mechanism, which is electrostatic.  
The present paper summarizes the various 
properties of importance in quantum dusty plasmas. 
The paper is organized in the following way : 
Initially the basic set of quantum hydrodynamic 
equations are presented, including relativistic 
effects. Then we derived the Evolutionary equation 
in a d ispersive , dissipative medium using the 
standard mult iple scale perturbation technique by 
taking into account ultra-relativ istic effects. We 
analytically solved this equation to get an 
exponentially decaying Double Layer Structure. In 
the last section we discuss the results and give some 
concluding remarks of the work.  

 

2. Basic formulations 

 

Equations governing the Dynamics of Motion 

 

We consider the propagation of Dust-Ion acoustic 
waves in an unmagnetized , u ltra-relativ istically 
degenerate , 3-component super dense quantum 
plasma . In  order to investigate the formation and 
propagation of Double-layered structures in a 
homogenous , un-magnetized plas ma ;  we start with 
a set of inter-penetrating flu id characterized  by the 
equations of continuity and motion of the negatively 
charged dust particles, positively charged ions and 
electrons with the Poisson’s Equation. The 
dynamics of such a plasma is governed by the 
equations following the one-dimensional quantum 
hydrodynamic model . 
    Following Chandrasekhar (1939) , the electron 
degeneracy pressure in fully degenerate and 
relativ istic configuration can be expressed as 
follows : 

Pj = 
𝜋𝑚𝑒 4𝑐53ℎ3 [𝑅𝑗(2𝑅𝑗2 − 3)√1 + 𝑅𝑗2 + 3 sinh−1 𝑅𝑗] ,  

In which,  𝑅𝑗 = 𝑃𝐹𝑗𝑚𝑒𝑐 = [3ℎ3 𝑛𝑗 8𝜋𝑚𝑒 3𝑐3⁄ ]1 3⁄ = 𝑅𝑗0 𝑛𝑗1 3⁄
 

Where,  Rj is the Relativity parameter . 

Using ,   𝑅𝑗0 = (𝑛𝑗0𝑛𝑒0 )1 3⁄
with 𝑛𝑒0 = 8𝜋𝑚𝑒 3𝑐33ℎ3 ≈ 5.9 ×1029 and for  Rj→ ∞, we get  𝑃𝑗 = 18 (3𝜋)1 3⁄ ℎ𝑐𝑛𝑗 4 3⁄ . 

This is the Ultra-relativistic degeneracy pressure.                     

We use    :    𝑃𝑗 = 18 (3𝜋)1 3⁄ ℎ𝑐𝑛𝑗 4 3⁄  

Where, j = e for electrons and j = i for ions . 
 
Assuming that the Bohm potential is independent of 
any thermal fluctuations at finite temperature 
situation , the set of QHD equations governing the 
dynamics of the dust-ion plas ma waves in the 
Model Plasma under consideration are given by - 
 𝜕𝑛𝑑𝜕𝑡 + 𝜕𝜕𝑥 (𝑛𝑑 𝑢𝑑 ) = 0                                       (1) 𝜕𝑛𝑖𝜕𝑡 + 𝜕𝜕𝑥 (𝑛𝑖𝑢𝑖) = 0                                         (2) 𝜕𝑛𝑒𝜕𝑡 + 𝜕𝜕𝑥 (𝑛𝑒𝑢𝑒) = 0                                       (3) 𝜕𝑢𝑑𝜕𝑡 + 𝑢𝑑 𝜕𝑢𝑑𝜕𝑥 = 𝑄𝑑𝑚𝑑 𝜕φ𝜕𝑥 + 1𝑚𝑑 𝜂𝑑 𝜕2 𝑢𝑑𝜕𝑥2       (4) 

 𝜕𝑢𝑖𝜕𝑡 + 𝑢𝑖 𝜕𝑢𝑖𝜕𝑥 = − 𝑄𝑖𝑚𝑖 𝜕φ𝜕𝑥 − 1𝑚𝑖𝑛𝑖 𝜕𝑝𝑖𝜕𝑥 + 1𝑚𝑖 𝜂𝑖 𝜕2 𝑢𝑖𝜕𝑥2    
                                                                                (5) 𝜕𝑢𝑒𝜕𝑡 + 𝑢𝑒 𝜕𝑢𝑒𝜕𝑥 = 𝑄𝑒𝑚𝑒 𝜕φ𝜕𝑥 − 1𝑚𝑒𝑛𝑒 𝜕𝑝𝑒𝜕𝑥  
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 + ℏ22𝑚𝑒 2 𝜕𝜕𝑥 [ 1√𝑛𝑒
𝜕2 √𝑛𝑒𝜕 𝑥2 ]                               (6) 

 𝜕2 𝜙𝜕 𝑥2 = 𝑄𝑒𝑛𝑒+ 𝑄𝑑 𝑛𝑑 − 𝑄𝑖𝑛𝑖                              (7) 

Where,  
 
         j  → e for electrons, d for dust and i for   ions  
         n j → number density of the jth species 

         Qj  → charge ( Zj |e| ) of the jth species 
         φ  → electrostatic wave potential 
         Pj→Degeneracy Pressure of the jth species 
 
 

To achieve the dimensionless form of the above 
equations, we used standard normalization 
conditions , which are – 

 𝑥 → 𝑥𝜔𝑝𝑒𝑣𝐹𝑒 𝑡 → 𝑡𝜔𝑝𝑒𝑛𝑑 → 𝑛𝑑𝑛𝑑0 𝑢𝑑 → 𝑢𝑑𝑣𝐹𝑒 𝜑 → |𝑒|𝜑2𝑘𝐵 𝑇𝐹𝑒 𝜂 → 𝜂𝑚 𝜔𝑝𝑒𝑣𝐹𝑒2where , 𝜔𝑝𝑒 = √4𝜋 𝑛𝑒0𝑒2𝑚𝑒  

 

3. Analytical studies  

 

3.1 Derivation of Linear Dispersion Relation: 

 
In order to investigate the linear behaviour of the 
Dust Ion Acoustic waves, we obtain the Linear 
Dispersion Relation and study its parametric 
dependence. We assumed that all field variab les 

vary as 
)( wtkxi

e


 and accordingly for normalized 
wave frequency (ω) and complex wave number (k) 
[which contains both real and imaginary part] , the 
Linear Dispersion equation is obtained . 
Here the viscous term plays a pivotal role. The 
Dispersion Relation has an exponentially decaying 
complex part in  addition to the real part. In  this case 
, we substitute the wave number with a real p lus an 

imaginary  part (k= xk +i yk ) . The imaginary part of 

the dispersion relation amounts to collision-less 
damping. On  the other hand the real d ispersion 
relation fo llows that of a standard dust ion acoustic 
wave. The complex part of the viscosity is due to its 
dynamic nature. In this section we derived the 
complex d ispersion relat ion for dust ion acoustic 
waves including dynamic viscosity. 
If we take the coefficient of the imaginary part of 
the complex wave no  ‘k’ to be 0 i.e. ky = 0, then we 
get a simplified Real Dispersion Relation 
expression:  
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(8) 

 
Similarly, If we take the coefficient of the real part 
of the complex wave no ‘k’ to be 0 i.e . kx = 0, then 
we get a simplified Imaginary part of the linear 
dispersion relation expression:  
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                                                                          (9) 

3.2   Derivation of evolutionary equation in a 

dispersive dissipative medium and its solution 

 

In order to study the nonlinear nature of Dust-Ion 

acoustic wave, we derive the KdV equation from 

the basic equations. For the description of the 

propagation of dust ion acoustic waves, we expand 

the flow variables asymptotically about the 

equilibrium state in terms of the smallness 

parameter ε as follows: 

 

[𝑛𝑗𝑢𝑗𝜑] = [ 1𝑢0𝜑0] + 𝜖1 [𝑛𝑗 (1)𝑢𝑗(1)𝜑 (1) ] + 𝜖3 [𝑛𝑗(2)𝑢𝑗(2)𝜑 (2) ] + 𝜖5 [𝑛𝑗 (3)𝑢𝑗(3)𝜑 (3) ] .. 
                                                                                    (10) 

From the Standard Reductive Perturbation 

Technique, we use the following stretching of space 

and time variables: 

 𝜉 = 𝜖(𝑥 − 𝑣0𝑡)𝜏 = 𝜖3𝑡𝜂 = 𝜖𝜂0 

Where, 

v0 → Normalized Linear wave Phase velocity  
ε →  Smallness parameter  

ξand τare stretched space and time coordinates 
respectively.  
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The stretching in η is due to small variat ion in the 

perpendicular direction.  

Now solving for the lowest order equation with 

boundary conditions for all variables:.  nd
(1) , ne

(1) , 

ni
(1) , ud

(1) , ue
(1)  , ui

(1)  and  𝜑 (1) → 0   𝑎𝑠|𝜉| →∞ , the following solutions are obtained : 

       𝑛𝑑 (1) = 𝜇𝑍𝑑−(𝑣0−𝑢0)2 𝜑 (1) = 𝑃𝑑 𝜑 (1) (𝑠𝑎𝑦)  ,  (11) 

  𝑛𝑒 (1) = 𝑍𝑒𝛽 − (𝑣0 − 𝑢0)2 𝜑 (1) = 𝑃𝑒 𝜑 (1) (𝑠𝑎𝑦) ,                                                                                  (12)    𝑛𝑖 (1) = 𝜌𝑍𝑖−[(𝑣0 − 𝑢0)2 + 𝛼] 𝜑 (1) = 𝑃𝑖 𝜑 (1) (𝑠𝑎𝑦) ,                                                                                    (13) 
Going for the next h igher order terms in 𝜖  and 
following the usual method, we obtain the desired 
Evolutionary Equation:  
 𝜕𝜑𝜕𝜏 + 𝐴 𝜕3𝜑𝜕 𝜉3 − 𝐵 𝜕2𝜑𝜕 𝜉2 = 0 ,      (14) 

 
(Here we see that the non-linear term is absent and 
the dispersive effect is predominant. The dissipative 
term relating to the viscous coefficient η o f ions and 
dust, is also present. ) 
 
To find the solution of the KdV Burgers equation, 
we transform the independent co-

ordinatesξandτinto coordinate η=ξ- Mτ .Here 
M is the normalized  constant speed of the wave 
frame, also known as Mach number. 
 
Applying the boundary conditions that: 
 𝑎𝑠|𝜂| ± ∞ ;  𝜑, 𝜕𝜑𝜕𝜂 , 𝜕2 𝜑𝜕𝜂2 → 0 

 
the following solution is obtained: 
 𝜑 = 𝜑0 𝑒[(𝐵−√𝐵2+4𝐴𝑀 ) 2𝐴⁄ ]𝜂

 ,      (15) 
 
Where, 𝜑0 is the Amplitude of the Electrostatic 
Potential wave. 
 
4. Numerical studies: results and 

discussions 

 
4.1 Real part of the complex linear dispersion 

relation 

 

 

The wave frequency ω is found to increase with the 
increase in wave number k for a definite value of 
Quantum diffraction parameter H and the increase 
of ω with k is even more if we increasingly vary H 
from 1 to 3. Higher the value of H steeper is the 
curve. 
 

 
 

Fig. 1(a): Dispersion Curves for different values of 
Quantum Diffraction Parameter (H). 

 

The H dependent term, called Bohm potential term, 
plays a role similar to that of pressure and is 
responsible for typical quantum phenomena such as 
tunnelling and wave packet spreading. H is a 
normalizing factor of the energy of a Plasmon (here 
we take only electrons).The electron plasma 
oscillation frequency evidently contributes to the 
frequency of the dust ion acoustic wave making the 
quantum effects generate high frequency 
oscillations in the high wave number range. 
Quantum effects in plas ma become significant when 
the fermi energy of the plas ma species exceeds the 
thermal energy  which requires high density and low 
temperature. 
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Figure 1(b):  Dispersion Curves for different values 

of Streaming Velocity (u0) 
 

For a defin ite value of the Streaming Velocity u0 , 

the wave frequency ω increases sharply with the 
wave number k. The steepness of the curve 
increases with u0. 
  
If an energetic part icle stream is injected in a 
plasma, a current will be set up along the plasma. 
So the different plasma species (ions, electrons and 
dust) will have different relat ive drift velocities. 
The energy from the particles can lead to plas ma 
wave excitation thus leading to an increase in  group 
velocity of the wave which  results in the increased 
steepness of the dispersion curve. 
 

 

 

Fig. 1(c):  Dispersion Curves for different values of 
Electron: Dust Mass ratio (µ) 

 

When we consider a particular value of Electron –
to- Dust mass ratio µ ( standard 0.0001 as the mass 
of a Dust particle is approximately 10,000 times 
that of an Electron ) , it is observed that  ω increases 

with k. For long wavelength range (when k<0.5), it 
is seen that from µ=1/8000 (0.000125) to 
µ=1/12000 (0.000083), the value of ω decreases 
very minutely. For h igher values of k, we see an 
asymptotic convergence of the three curves. 
  

µ is the ratio of mass of electron to that of dust. 
Since both are negatively charged we can consider 
their reduced mass. With decrease in µ, the reduced 
mass of the dust and electron also increases. Now 
we know from the expression of plas ma frequency 
that it is inversely proportional to the mass of the 
species. Therefore with decrease in µ, we observe a 
decrease in frequency of the curves. 

In the low energy region of  the curve (low wave 
number), the amount of energy required to set the 
dust particles of different mass(due to different 
inertia) in oscillations of same frequency is slightly 
different, which exp lains the slight deviation of 

frequency with dµ  in the low k reg ion. In the high 

energy region of the curve (high wave number), the 
differences in the ratio of the masses do not alter 
the wave frequency of the compact dense plasma. 

 
 

Fig. 1(d): Dispersion Curves for different values of 
Ion -to-Electron Equilibrium number density ratio 

(δ2) 
 

For a part icular value of Equilibrium Number 
Density ratio (δ2) of Ion to Electrons, ω increases 
with k. For s maller values of δ2 (in the order of one-
tenths to hundreds), there is no noticeable change in 
the w v/s k curve with the variation of δ2. When δ2 

is varied from 1000 to 2500 in the order of 500, 
significant changes in the graph can be seen. In the 
long wavelength range (when k<1), it is seen that 
the value of ω minutely decreases with the increase 
in δ2.The 4 curves asymptotically converges near k ̴ 
1. 
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Now, the charges of ions and electrons are opposite 
in nature. Therefore the electric fields that are set 
up by their respective oscillations are also opposite 
in nature. Therefore the fields get balanced when 
taken together which u ltimately results in  the 
decrease in the frequency of the p lasma wave in  the 
low energy region of the dispersion curve. This 
effect increases with the density of the plas ma. So 
the equilibrium number density ratio of ions to 
electrons influences the frequency and group 
velocity of the plas ma wave and  they decrease with 

δ
2

. In  the high energy region of the curve (high 

wave number), the differences in the ratio of the 
equilibrium number densities do not bring about 
any significant change in  the wave frequency of the 
compact dense plasma. 
 
For a definite value of v iscous coefficient of a dust 
(ηd), ω increases with k. W ith the increase in ηd , 
the ω curve is found to decrease within a small 
range of k. The curves for d ifferent values of the 
parameter ηd overlap for s mall k (<0.3), then 
diverge slightly in the range 0.3<k≤1 and again 
asymptotically converge for k>1. 

 

 
 

Fig. 1(e): Dispersion Curves for different values of 
Coefficient of Viscosity of Dust (ηd) 

 

 
We see that the dispersion curves are almost 
independent of the viscosity effects except in the 
small wave number range. In this range of energy 
due to resonant interactions between the dust 
particles in the plasma, an exchange of energy 
happens. This results in the slight divergence of the 
modes with varying viscosity parameters. The 
asymptotic convergence of curves for higher values 
suggests the independence of the plasma 
propagation on viscosity parameters.  

 
 

4.2 Imaginary part of the complex linear dispersion 

relation 
 

 
 

Fig. 2(a): Dispersion curves for different values of 
quantum diffraction parameter (H) 

 

 
 

 
 

Fig. 2(b):  Dispersion Curves for different values of 
Streaming Velocity (u0) 

 
 

 
Fig. 2(c):  Dispersion Curves for different values of 

Electron: Dust mass ratio (µ)  
 

When we consider a particular value of electron: 
dust mass ratio, it is observed that ω increases with 
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k. The curves show a sudden and a very steep 
increase of ω in the 2<k≤3 wave number region. 
Though the curves increase almost parallel, it  is 
quite evident from the graph that due to the increase 
in µ  the curves laterally shift towards the region of 
low k (long wavelength limit). We know that Bohm 
potential term, is responsible for typical quantum 
phenomena such as tunnelling and wave packet 
spreading. So before the particles in the plasma can 
lose their respective energies due to dissipative 
effects, the quantum tunnelling phenomenon occurs 
and the particles tunnel through the barriers to come 
to equilibrium with the surrounding environment. 
Due to this the frequency abruptly increases in the 
low wave number reg ion and ultimately becomes 
independent of energy. 
 

 
Fig. 2(d):  Dispersion Curves for variation of dust to 

electron equilibrium density ratio (δ1)  
 

 
K 

 

Fig. 2(e):  Dispersion Curves for different values of 
Coefficient of Viscosity of Ions (ηi). 

   
 

The viscosity effects on plasma results in damping 
just like any fluid moving in a highly viscous 
medium experiences damping. And the curves of 
varying viscosity parameters don’t seem to 
converge with high frequency and k.  
 

4.3 2-D Graphical solution of the evolutionary 

equation in dispersive, dissipative Medium 

 

 
 

Fig. 3(a):  φ v/s η Curves for different values of 
Quantum Diffraction Parameter (H). 

 
 

Fig. 3(b): φ v/s η Curves for different values of 
Streaming Velocity (u0). 

 

 
 

Fig. 3(c): φ v/s η Curves for different values of 
Electron: Dust mass ratio (µ) 

 

 
Fig. 3(d): φ v/s η Curves for different values of Dust 

Charge (Zd)   
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After mathematically  solving the set of normalized 
equations, we get an equation for the electrostatic 
wave potential. This solution is devoid of any 
nonlinear term. So  instead of obtaining  the 
conventional form of KdV-B Equation, we get here 
a new type of an  equation which we term as the 
“Evolutionary Equation in a Dispersive, Dissipative 
Medium”. On analyt ically solving the equation, we 
learn that the solution is an exponentially decaying 
function with stretched coordinate η (where η is 
defined in terms of space and time co-ord inates: ξ 
and τ).  We infer that since there is no abrupt 
change in the potential wave function or no 
stationary structure formation is observed, this 
potential do not g ive rise to shocks and solitary 
structure. When streaming velocity is decreased 
below a critical value we observe that this 
evolutionary formation of potential becomes 
exponentially increasing. This may be because of 
the dependence of the phase which may  be getting 
reversed below a certain u0. . 
 

 
Fig. 4: 3-D plot showing the variation of φ with co-

ordinates ξ and τ 
 

When we analyse the potential structure with 
respect to the independent co-ordinates ξ and τ, we 
observe a Double Layered  structure. A double 
layer is a structure in a plas ma and consists of two 
parallel layers with opposite electrical charge. The 
sheets of charge cause a strong electric field and a 
correspondingly sharp change in voltage (electrical 
potential) across the double layer. Double layers are 
found in a wide variety of plas mas, from discharge 
tubes to space plasmas and are especially common 
in current-carrying plasmas. 
 

5. Concluding Remarks 
 

To summarize, we have investigated the properties 
of Dust Ion Acoustic waves in p lasma in the 
framework of the Quantum Hydrodynamic Model 

incorporating ultra-relat ivistic effects. Numerical 
and analytical study of the linear dispersion relation 
(both complex and imaginary) are carried out to 
examine the Quantum effects due to Bohm 
Potential, v iscosity effects, and many other 
parameters like Streaming velocity,  mass ratios. 
The existence of Double Layered structure with the 
odd perturbation approach to our normalized set 
equations at the critical regime involving stretching 
of equations with integral powers has  been 
investigated using an analytical approach. It is seen 
that the amplitude of these potential format ions 
dimin ish as the negative dust charge Zd decreases 
with steep continuous fall near zero  charges and 
becomes almost constant for higher values of η. The 
Figures [3(a)] and [3(b)] shows how the amplitude 

decreases significantly with H and u0. The 
investigation presented here may be helpful 
in the understanding of the basic features 
of dense quantum dusty plasma found in 
many astrophysical environments including 
Earth's magnetosphere and Saturn's Rings. 
We may also get to study different 
instabilities like the Buneman Instability. 
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