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In this paper, the main focus of discussion is the evolution of the Korteweg-de Vries(KdV) equation by employing the standard 
reductive perturbation technique. The evolution of the KdV equation was derived using the conservation laws for DAW(Dust 
Acoustic Wave) mode in plasma containing dust particles and positrons to ascertain the structure of solitons. In this paper, the 
KdV equation has been solved both numerically and analytically. Further, setting up the NLSE(Non-Linear Schrodinger 
Equation) studies about Rogue wave and Dynamical system has been carried out  from the derived KdV equation. In addition to 
that, linear and non-linear analysis of Dispersion relation and group velocity profile for the DAW mode in plasma also has been 
discussed. All studies are supported by graphical representation to show all analytical results follow the theoretical model. 

 

1 Introduction 

Investigation of nonlinear phenomena in numerous 
media is becoming one of the topics of research 
interests in science and technology in recent years. A 
dusty plasma is defined as a mixed medium of dust 
particles, negative and positive ions, electrons. 
Massive dust particles in a plas ma can introduce new 
modes and instabilit ies such as dust-ion-acoustic 
waves and dust-acoustic waves etc. Many 
fascinating non-linear effects like So litary waves, 
Modulation Instability, Double layers, etc. are being 
continuously analyzed both in complex space plasma 
and laboratory plasma systems[1][2][3][4][5][6]. 
The size o f a dust grain is in the range of micrometer 
and sub-micrometer[7][8]. Due to field emission, 
plasma currents change the properties of p lasma 
waves in space. In many astrophysical environments 
such as interstellar medium, asteroid zones, 
cometary tails, planetary rings, Earth’s 
magnetosphere, the neighborhood of stars, radio 
frequency discharges, dusty plasmas are abundantly 
found[8][9][20]. It has been found that the presence 
of statically  charged dust grains in plas ma can  
generate extremely low-frequency dust acoustic 
waves in the absence of a magnetic 
field[10][11][20]. The vibrat ions of dust charges 
cause damping to dust acoustic waves. Many results 
(with minor correct ions) of negative ion plasma can  
be adapted to dusty plasma for its low-frequency 

behavior when the wavelength and the inter-particle 
distance are much larger than the grain size[12][20]. 
In the case of space plasma with stationary or mobile 
dust, DA and DIA solitons have been investigated to 
conclude the structure of solitons with positive or 
negative potentials based on implicitly occurring 
dust charges Zd in some forms. When dust particles 
are present in the system, the relativ istic effects to 
the small particle as electrons and ions in the space 
regions, like laser-plas ma interaction, Van Allen  
Radiat ion belt, Earth’s magnetosphere, etc. are not 
considered[9]. In this project we have considered the 
plasma model consisting of mobile dust particles, 
Maxwell-Boltzmann distributed positrons, to derive 
the Korteweg de-Vries (KdV) equation[13][14] for 
solitary wave structures. As well as we have 
extended studies for dispersion relation. There is a 
certain kind of nonlinear Schrodinger 
equation(NLSE) derived solutions that give rise to 
very high amplitude waves[15][16][17]. These 
waves occur sporadically and vanish within an 
instant. The resulting wave is known as  Rogue 
Wave(RW). Recently, the rogue waves are 
theoretically observed in a multicomponent plasma 
and have been experimentally  observed and in the 
framework of the NLSE. Presently, rogue waves 
studies are done in many different systems like 
nonlinear fiber optics, Bose-Einstein condensates, 
superfluid, optical cavit ies, plasmonic, narrowband 
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directional ocean waves, and electromagnetic pulse 
propagation. 

 

2 Basic formulations 

A. Governing Equations 

The equations for Dust & Ion-acoustic mode in 3 
component plasma are[13][18][19] the following: 

1.1. 
∂𝑛𝑑∂𝑡 + ∂∂𝑥 (𝑛𝑑 𝑢𝑑 ) = 0                        

1.2. ( ∂∂𝑡 + 𝑢𝑑 ∂∂𝑥)𝑢𝑑 = 𝑄𝑑𝑚𝑑 ∂𝜙∂𝑥 + 1𝑚𝑑 𝜂𝑑 ∂2𝑢𝑑∂𝑥2   

1.3. 
∂𝑛𝑖∂𝑡 + ∂∂𝑥 (𝑛𝑖 𝑢𝑖) = 0                        

1.4. ( ∂∂𝑡 + 𝑢𝑖 ∂∂𝑥) 𝑢𝑖 = 1𝑚𝑖 (𝑄𝑖 ∂𝜙∂𝑥 − 1𝑛𝑖 ∂𝑝𝑖∂𝑥 ) +                                                         1𝑚𝑖 𝜂𝑖 ∂2𝑢𝑖∂𝑥2  

1.5. 
∂𝑛𝑒∂𝑡 + ∂∂𝑥 (𝑛𝑒𝑢𝑒) = 0 

1.6. ( ∂∂𝑡 + 𝑢𝑒 ∂∂𝑥) 𝑢𝑒 = 1𝑚𝑒 (𝑄𝑒 ∂𝜙∂𝑥 − 1𝑛𝑒 ∂𝑝𝑒∂𝑥 ) +                                           ℏ22𝑚𝑒𝛾𝑒 ∂∂𝑥 ( 1√𝑛𝑒 ∂2√𝑛𝑒∂𝑥2 ) 

1.7. 
∂2 𝜙∂𝑥2 = 4𝜋(𝑄𝑒𝑛𝑒 + 𝑄𝑖𝑛𝑖 + 𝑄𝑑 𝑛𝑑 )  

(1) 

       Where, d, i for dust and ions nd and ud and ni and 
ui are the number density and velocity of the 

respective species. Equation of motion for dust and 
ions are respectively given as and φ is the 

electrostatic potential, Qe = e, Qd = Zde, Qi = −Zde, Qd 

= Zde , e = 1.6×10−19(zd is the number of effective 

charges of dust it is the average number of electrons 
accumulated on it), md and mi are the mass of each 

species respectively, ηd and ηi are the dissipation 

coefficient of dust and ions. 
 
B. Normalization 

We applied the following normalization scheme: 𝑥 → 𝑥𝜔𝑐𝑉𝐹ℎ , 𝑡 → 𝑡𝜔𝑐 , Φ → 𝑒Φ2𝑘𝐵 𝑇𝐹ℎ , 𝑛𝑗 → 𝑛𝑗𝑛𝑗 0, 𝑢𝑗 → 𝑢𝑗𝑉𝐹ℎ  𝑁𝑜𝑡𝑒: 𝑉𝐹ℎ = √2𝑘𝐵 𝑇𝐹ℎ𝑚𝑒 , 𝜔𝑐 = √4𝜋𝑛𝑒𝑒2𝑚𝑒  

Applying these Normalizing  scheme in the 
governing equation(eq:1) 3 sets of Normalized 
equations are found which are (a)Dust and Ion-
acoustic mode in  3(e, d, i) components; (b) IAW 
mode in 2 components (d, i); (c) DAW mode in 2 
components (positron, negative dust) We have used 
set-c mode for further study. The normalized 

governing equations are the following: 
The dust-acoustic mode in 2 component plasma 

[Positron and Negative Dust] 
1) SET C: 

2.1. 
∂𝑛𝑑∂𝑡 + ∂∂𝑥 (𝑛𝑑 𝑢𝑑 ) = 0 

2.2. ( ∂∂𝑡 + 𝑢𝑑 ∂∂𝑥)𝑢𝑑 = 𝜇𝑑 ∂𝜙∂𝑥 + 𝜂𝑑 ∂2𝑢𝑑∂𝑥2  

2.3. 
∂2 𝜙∂𝑥2 = (𝑛𝑑 − 𝑛𝑝 𝛿𝑑 𝑝)  

(2) 

Note: 𝛿𝑑𝑝 = 𝑛𝑒0𝑧𝑗𝑛𝑗0 

Here Positron has been taken as Maxwellian 

Distributed i.e. 

np = np0exp(−φ) 

3 Dispersion relation  

Here we have considered an ideal, homogeneous, 
unmagnetized, two-component dust- positron 
plasma. The plasma consists of negatively  charged 
dust particles and positively charged Positrons. We 
have also considered that the Positrons in the 
background are Maxwell-Boltzmann distributed, and 
we assume the dust particles behave as a fluid. The 

dependent variables (n, u, p, φ) are expanded as: 𝑛𝑝𝑞 = 𝑛𝑝𝑞 (𝜉, 𝜏)𝑒𝑖(𝑘𝑥−𝜔𝑡 ) 𝑢𝑝𝑞 = 𝑢𝑝𝑞 (𝜉, 𝜏)𝑒𝑖(𝑘𝑥−𝜔𝑡 ) 𝜙𝑝𝑞 = 𝜙𝑝𝑞 (𝜉,𝜏)𝑒𝑖(𝑘𝑥 −𝜔𝑡)  

 (3) 

Where n, u, p, φ satisfy the reality condition 𝐴−1𝑛 =𝐴−1𝑛∗
 (the asterisk is complex conjugate). 

Now, substituting the above 
expansions[(eq:8),(eq :3)] into the Set-C governing 
equations we can obtain the nth-order reduced 
equations. 
For the first order (n=1) equation, we obtain 
following dispersion relation for the DAW: 𝜔2 − 3𝑘𝑢0𝜔 + [2𝑘2𝑢02 − 𝜇𝑑 𝑍𝑑 𝑘2(𝑘2 + 𝛿𝑑𝑝 𝜎𝑒)] = 0 

(4) 
 

*Here, σe
2 term is neglected. 
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Group Velocity 

From, the dispersion relation equation(eq:4) we 

get the Group Velocity (Vg)[19]: 

 𝑉𝑔 = ∂𝜔∂𝑘 = [3𝜔𝑢0+2𝑘𝜇𝑑𝑍𝑑𝛿𝑑𝑝𝜎𝑒(𝑘2+𝛿𝑑𝑝𝜎𝑒)2 −4𝑘𝑢02][2𝜔−3𝑘𝑢0]  

 (5) 

Now,  Vp i.e., phase velocity, so the 
equation(eq:5) becomes: 

𝑉𝑔 = 𝜕𝜔𝜕𝑘 = [3𝑉𝑝 𝑢0 + 2𝑘 𝜇𝑑 𝑍𝑑 𝛿𝑑𝑝𝜎𝑒(𝑘2 + 𝛿𝑑𝑝 𝜎𝑒)2 − 4𝑘𝑢02][2𝑉𝑝 − 3𝑘𝑢0]  

(6) 

4 KdV equation and solitary wave structure: 

We employ the standard reductive 
technique[13][18][19][20][24] on the Set C type 
equation to obtain the NLSE. The independent 

variables are stretched as  

1 3

2 2
0 0( ), ,x V t t          (7) 

Where ε is a small parameter. For the derivation of 
KdV equations, we are ignoring the η term for the 
simplification of the calculation. We applied the 
following perturbation expansion in  the governing 

equation:  
 

(1) (2)

(1) 2 (2)
0

(1) (2)
0

1
j j j

j j j

j j

n n n

u u u u 
   

      
               
             

  (8) 

where j is d, i for dust, ions, and respectively and nj 

and uj are the normalized  number density and 
normalized velocity of the respective species. Now, 
substituting the stretching (eq:7) and the perturbation 
expansion (eq:8) in Set-C normalized equation we 
get a new set of equations and solving for the lowest 

order of ε with boundary conditions i.e. 𝑛𝑑(1) ,𝑢𝑑(1) ,𝜙 → 0, 𝑎𝑠 ∣ 𝜉 ∣→ ∞ 

we obtain the following solutions for the first-order 
density and velocity: 𝑛𝑑(1) = − 𝜇𝑑 𝑍𝑑 Φ(1)(𝑉0 − 𝑢0)2 (9) 

 𝑢𝑑(1) = − 𝜇𝑑𝑍𝑑Φ(1)(𝑉0 −𝑢0)  

(10) 

Using the next higher-order terms in ε and after a 

few algebraic operations [24] , we obtain the KdV 
equation as follows: 

 
∂𝜙(1)∂𝜏 + 𝐴𝜙 (1) ∂𝜙(1)∂𝜉 + 𝐵 ∂3𝜙(1)∂𝜉3 = 0 (11) 

Here, 

𝐴 = −(12)[3(𝜇𝑑 𝑍𝑑 )2 − (𝜇𝑑 𝑍𝑑)4𝛿𝑑𝑝 𝜎𝑝2(𝑉0 − 𝑢0) ] 
𝐵 = (𝑉0 − 𝑢0)32𝜇𝑑 𝑍𝑑  

To find the solution to the KdV equation (eq:11) we 
transform the independent variables ξ and τ into a 
single variable η=ξV0τ, where V0 is the normalized 
constant speed of the wave frame. Applying the 

boundary conditions that as  
2

2
, , ,

     
 

   

we obtain the following possible solution: 

Δmsech
     
 

          (12) 

Where the amplitude φm and the width ∆ of the 
solutions are given by: 

So, the balance between the Dispersive term and 
non-linear term in the KdV equation creates the 
solitary structure and their magnitude determines the 

characteristics of such wave. 

5 Non-linear Schrödinger equation (NLSE) 

 

Using the following Fourier transformation: 

2 2 2 2 2
0 1 1 2 2

i i i i
e e e e
               ò ò ò ò ò

  

 ψ = kρ −ωθ (13) 

And the perturbation expansion of φ(eq-8) on 
derived KdV equation we get the group velocity 
expression: 

 Vg = −3Bk
2 (14) 
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Using variable stretching method[15][16][17], we 
get complex Non-Linear Schrodinger 
Equations(NLSE): 𝑇𝑦𝑝𝑒 − 𝐼: 𝑖 𝛿𝜙𝛿𝜃 + 𝑃 𝛿2𝜙𝛿𝜌2 = −𝑄(𝜙∗𝜙)𝜙 

(15) 𝑇𝑦𝑝𝑒 − 𝐼𝐼: 𝑖 𝛿𝜙𝛿𝜃 + 𝑃1 [𝛿2𝜙𝛿𝜌2 + 1𝜙 𝛿𝜙𝛿𝜌 ] = −𝑄1(𝜙∗ 𝜙)𝜙  

(16) 𝑤ℎ𝑒𝑟𝑒 , 𝑃 = −3𝐵𝑘; 𝑄 = − 𝐴26𝐵𝑘 ; 𝑃1 = − 2𝐴𝑘2 ;  𝑄1 = − 𝐴23𝐵𝑘 

 

A. Rouge Wave 

From the above complex NLSE equations we got 
the following standard solution: 𝜙(𝜌, 𝜃) = 𝑖√2𝑃𝑄 [ 4(1+4𝑖𝑃𝜃)1+16𝑃2𝜃2+4𝜌2 − 1]𝑒2𝑖𝑃𝜃  (17) 

solving φ in terms of P, Q, P1, Q1 gives rouge wave 
profile for both types of NLSE equation. 

B. Dynamic System 

We used the NLSE equation to get the Dynamical 

equation[21][22]: 𝑖 𝛿𝜙𝛿𝜃 + 𝑃 𝛿2𝜙𝛿𝜌2= −𝑄(𝜙∗𝜙)𝜙  𝑤ℎ𝑒𝑟𝑒 , 𝑃 = − 2𝐴𝑘2 ; 𝑄
= − 𝐴26𝐵𝐾 𝐴

𝐵 = (𝑉0 − 𝑢0)32𝜇𝑑 𝑍𝑑  

Using wave transformat ion η = (lρ 
−Vθ)  from complex NLSE equation we 

get(l=0.65,V=0.9): 𝑖 𝛿𝜙𝛿𝜂 + 𝑃𝑙2 𝛿2𝜙𝛿𝜂 2= −𝑄(𝜙∗𝜙)𝜙  

now using complex transformat ion φ(η) = ψ(η)eiβη in 

the above equation we get the equation of motion for 

Dynamic system 

 ψ” = Mψ −Nψ3  (18) ℎ𝑒𝑟𝑒 , 𝑀 = 𝛽2 − 𝛽𝑉𝑃𝑙2 ; 𝑁 = 𝑄𝑃𝑙2 

numerically solving the above equation will g ive a 
phase curve and wave propagation curve. 

6 Results and discussion 

A. Dispersion Relation 

The evolution of dispersion relat ion has been 
observed in this non-linear analysis. From the  2D 
and 3D curve(fig-1), it  can be concluded that for 

higher values of wavenumber(k) the frequency(ω) 

does not depend on 𝛿𝑑𝑝 = ( 𝑛𝑝𝑜𝑧𝑑𝑛𝑑𝑜 ) 

 
Fig. 1. 2D and 3D plot of k vs ω for different δd p 

The first derivative with respect to 
Wavenumber(k) of the Dispersion relation equation 
gives the Group Velocity equation. The 2D p lot(fig-
2) of Group velocity(vg) states that when the wave 
number increases the value of group velocity 
drastically falls.  
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Fig. 2. 2D plot for k vs Vg (r : δd p= 1,b : δd p= 5,g : δd 

p= 10) 

While the volume plot(fig-3) at ω-k space shows a 
spark, which can  be inferred as the classical regime 
of the system. 

 

Fig. 3. 3D volume plot for k vs ω Vg (Here k is in the 

range 0-5) 

 

Fig. 4. 3D volume plot for k vs ω Vg (Here k is in the 

range 0-2) 

Here, (fig-4) the above plot shows magnified part(k 

range 0-2) of the previous 3D plot(fig-3)   

Now, rep lacing 𝜔 𝑘⁄  values with phase velocity 

term(Vp) in group velocity equation gives the relation 
between phase velocity and group velocity which is 
inversely proportional(fig-5). 

 

 

Fig. 5. 3D volume plot for k vs phase velocity(Vp) vs 

group velocity(Vg) 

B. KdV Equation 
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Soliton structures can be observed from the 
analytical solution of the Korteweg–de Vries(KdV) 
equation. The 2D p lot(fig-6) states that φ has only 

values around η value |1|. Otherwise, it remains zero. 

Fig. 6. 2D plot of φ vs η for different (V0−udo) 

denoted as Y 

3D plot(fig-7) states the φ value increases with the 
difference of (V0−Ud0). The 3D plot of φ in  terms of 
changing Zd (fig-8)shows that φ value decreases 
with the increasing value of Zd. Hence, in this case, 
we get the compressive soliton structure as shown 
in the plots. 

 

Fig. 7. 3D volume plot of φ vs η for different 

Fig. 8. 3D volume plot of φ vs η for different Zd 

While solving the KdV equation ‘Numerically’ 
gives a soliton profile(fig-9) that perfectly goes with 

the analytical solution. 

 

Fig. 9. Numerical solution curve for the KdV 

equation 

C. Rouge Waves 

Both types of complex Non-Linear Schrodinger 

Equation(NLSE) g ive 𝑃 𝑄⁄  
> 0 which indicates the 

solution is an unstable wave equation. The complex 
NLSE of the first type(fig-10.a) gives a solitary 
profile graph. While the complex NLSE of the 
second type(fig-10.b) gives a short of an instant 

occur-vanish profile of High amplitude. 
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Fig. 10. Rouge Wave solution for a) type-I(real, 

imaginary) and b) type-II(real, imaginary) 

D. Dynamic properties 

Dynamic system solution shows the progressive 
periodical Dust acoustic waves for different lengths. 
The plots show the wavelength of the periodic wave 

solution increases ' 𝑙(length) '. So, the wave period 
also increases with a wavelength which can be 
confirmed from the phase curve also. 

 

Fig. 11. Progressive waves and phase plot of k vs ω 
for different δd p 

To sum up, we tried to show that the interactions 
of the individual particles with the potential function 
generate a compressed solitary wave structure that 
propagates over space and evaluates with time. We 
were successful in our object ives. Primarily, we 
analyzed the formation of and properties of the KdV 
solitary structure in a two-component plasma both 
analytically and numerically. We have made use of a 
standard reductive perturbation technique to derive 
the KdV equation, and after doing some 
mathematica l analysis and conserving physical 
quantities like momentum and others, we obtained a 
solitary profile with a time-dependent amplitude, 
width, and wave speed. Secondly, we have made use 
of the same technique in  the analysis of the nonlinear 
Dispersion Relation and observed the evolution of 
that relationship. Next, we applied partial 
differentiation in the Dispersion Relation equation to 
get the Group Velocity equation and we also 

observed the evolution of the equation in that 
context. Lastly, we calculated the NLSE equation 
from the KdV equation and used those complex 
NLSE equations to get Rouge wave solution and 
Dynamical system evolution. 

7 Conclusion 

The Korteweg-de Vries (KdV) equation has been 
known since 1895[23]. It has two closed-form 
solutions associated with it. One of them is a well-
known solitary wave solution. The relevance of the 
KdV equation to dusty plasma physics is becoming 
apparent, mainly  to study the shock wave profile of 
numerous astrophysical phenomenon and laboratory 
plasma. The typical way in which the KdV equation 
arises in plasma physics has been illustrated in this 
work. Now the question comes, how then the KdV 
equation is related to such a system is . The 
connection comes about when a special form of 
perturbation analysis is carried out to examine the 
behavior of small but finite amplitude waves. The 
consequence of this is then found to be that the 
individual perturbations in the components of 
uj(velocity) and nj(number density) (here j is the 
respective species) each satisfy a KdV equation so 
that the behavior of its solutions is of direct 
relevance to the study of the weak nonlinear 
dispersive waves in plas mas. Specifically, the 
solitary wave is remarkably stable to large 
perturbations. Numerical experiments have shown 
that a solitary wave will even preserve its identity 
after numerous interactions with other solitary 
waves. One surprising consequence of this analysis 
has been the discovery that after interactions each 

solitary wave returns to its original amplitude. 
Dusty plasmas are main ly consisting of four 
components i.e., electrons, ions, neutrals, and 
charged microparticles (dust particles). Because the 
dust grains are charged, they are electrically coupled 
to and fully interact with the background plasma. In 
the laboratory, dusty plasma allows direct 
visualizat ion of the kinetic behavior of plas ma 
phenomena. In this study, we have discussed the 
plasma consisting of two components, negative dust 

particles, and positron. 
    We have investigated the behavior of the rogue 
waves from NLSE in the defined plas ma system. It is 
found that at certain parameters like length, dust-
acoustic speed, rest mass of sub-particles, density, 
and temperature ratio. These factors play a 
significant role in deciding the amount of 
concentrated energy in the rogue waves. 
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