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We have studied the Rogue wave existence and propagation in Ion-acoustic (IA) mode for the highly energetic case using 

kappa distributed electrons in accordance with the Korteweg–de Vries (KdV) equation that is modified KdV and extended 

KdV equation. We have used reductive perturbation method. We first examined the linear dispersive behaviour in Ion-

acoustic mode. Obtaining the Nonlinear Schrödinger equation, we simulated Rogue wave and examined dynamics of it, and 

its response to small perturbations.  We discussed the possibility of generation of Rogue wave as well as the stability of this 

against various parameters like wave number, spatial and time component. This study is quite helpful for understanding some 

prominent points of the nonlinearity of IA waves and Rogue wave generation of the highly energetic case in space plasma 

also in a laboratory plasma. 

 

 

1. Introduction  

  

We have studied the possibilities of the ion-

acoustic rogue waves (RWs) propagation under the 

distributions with high-energy tails which is the 

generally obtained Lorentzian (or Kappa) 

distribution functions, frequently the κ lies in the 

range of1.5 6  . Zaheer et al [1] used Kappa-

distribution functions to study electrostatic modes 

such as Langmuir waves, dust ion-acoustic waves, 

and dust acoustic waves in his paper. For  → it 

will drop to Maxwellian distribution, a Kappa ( )  

distribution function to describe super thermal 

populations. The family of kappa velocity 

distributions, introduced first by Vasyliunas 

(1968), is recognized to be highly appropriate for 

modelling specific electron and ion components of 

different plasma states. Now a Kappa ( )  

distribution which provides an unquestionable 

replacement for a Maxwellian distribution in space 

plasmas provides a continuous spectrum of energy. 

    "Rogue wave" (RW) is the large amplitude wave 

that occur more frequently than expected for 

normal. RWs have a peak value of amplitude more 

than twice of the significant wave height. It 

appears from nowhere and disappear without a 

trace [2-4] and has a localization property. 

     There is compressive and rarefactive solitary 

wave structure is possible in plasmas with 

immobile ions and streaming electrons [5]. To 

study the non-linear characteristics, we first study 

the linear dispersive characteristics in Ion-Acoustic 

mode and the variation of wave frequency ( )  

with wave number (k) with the dependence of 

other  
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unperturbed quantities. For electron plasma waves 

in a quantum plasma the variation of dispersion 

properties with the quantum diffraction is 

discussed by S. Chandra [6].  

    Korteweg–de Vries (KdV)/modified and 

Extended Korteweg–de Vries equation and non-

linear Schrödinger equation (NLSE) has been used 

to interpret the results of non-linear systems such 

as Ocean, Space and Astrophysical plasmas, Solar 

winds. The dynamics of non-linear RWs is 

governed by NLSE. Using appropriate 
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transformations on NLSE we arrived at a set of 

ordinary differential equations which were solved 

to obtain the phase trajectory and time series. It 

provides interesting results about the chaotic nature 

of the system. It is found that the gravity field and 

external magnetic field have a significant effect on 

the amplitude of the rogue waves. The numerical 

results obtained in the paper [7]. Electron-positron 

(e-p) plasma has its unavoidable interest for its 

wide-ranging applications in many astrophysical 

contexts, such as the early universe [8], active 

galactic nuclei structures [9], pulsar 

magnetospheres [10] and many more. In 

understanding of the nonlinear Langmuir rogue 

waves which accompanies collision less electron-

positron (e-p) plasmas are presented in 

moslem2011 [11] paper in detail. 

    The aim of our present work is to understand the 

structure of the Langmuir RWs and excitation of 

non-linear RWs in a plasma strongly composed of 

electrons and positrons. Particular questions to be 

answered are:  (i) non-linear structures and density 

perturbations in an (e-p) as and (ii) nature of wave 

envelops of non-linear RWs and further 

importance of the (e-p) plasma applications in 

astrophysical environments in general. 

 

 

2. Basic Formulations  

  

    We have considered here non-linear ion-acoustic 

waves propagating in unmagnetized plasma have 

no viscous effect at finite temperature also 

electrons are kappa distributed. Now the particles 

are considered as one-dimensional Fermi gas 

model at zero temperature with the pressure term 

[12], where the index j e=  for electron and j i=

for ions, 
j im m=  is the mass of electrons and 

j im m= is the mass of ion, 
FjT  is the Fermi 

temperature, 
FjV  is the Fermi speed. Number 

density of ions and electrons are respectively in  

and en .  

For Ion-acoustic mode the non-normalized basic 

governing equations are given by as follows, 
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Here  is the electrostatic wave potential, for 

electron charge can be written as 
eQ e=  and for 

ion charge will be 
i iQ Z e= −  and   , ,i i iu n p  are the 

fluid velocity, number density and pressure terms 

for ions. For convenience we introduce the 

normalisation schemes as follows: 
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 =  is the Plasma 

frequency, 2 B Feh
Fh

e

k T
V

m
= is the quantum ion 

acoustic velocity, FehT  is the Fermi temperature of 

electron and ,io eon n  are the equilibrium density of 

ion and electrons respectively. 

   Now we can obtain the equations in a 

dimensionless form as follows: 
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Highly energetic electrons are in plasmas can be 

treated with Kappa ( )  distribution which is 

formed in isotropic case, 
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Where, (2 3) /Ke e ew kT m = − is the 

thermal velocity, em  is the mass of electrons, eT is 

the equivalent temperature of electron, ev  is the 

velocity of electrons, ( )  is the Gamma 

function. 

 

 

Fig.1: Ranges for Thermal Ion-Velocity, ionT , Ion 

density for Solar wind plasma. Data Source: 

THEMIS Themis Probe A, Type: ESA, PI: C.W. 

Carlson & J. McFadden, PI_AFFILIATION: NASA 

NAS5-02099.   

  

 As it is clear that for a well-defined solution, we 

need the value of 3/ 2  at that value the 

distribution function collapses and the equivalent 

temperature is not defined. See at  → the 

distribution function is reduced to Maxwellian 

distribution form. If /e Feh eT T =  then from this 

the normalization electron density can be obtained 

as, 
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That means as  →  equation to can be 

degenerated into a Maxwellian distribution. Now, 

3/ 2  is needed for a physically valid solution. 

Further we expand equation (9) in binomial 

expansion we get, 
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and for lower order terms we can obtain the 

solution as, 
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3. Analytical Study  

 

3.1 Linear dispersion relation 

 

    Considering that linear characteristics is only for 

electrons and as ions enters into the region it will 

be treated as non-linear way. To obtain linear 

dispersive characteristics of electron as well as 

non-linearity of respective ions we have considered 

a perturbation expression for , , ,e i in n u 

quantities, 
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Substituting the expression (14) for each term in 

equations (5)-(7) and linearizing and considering 

that, 
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Also, we assume that all field quantities vary as 

following manner, 
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where we get the normalised wave frequency ω 

and wave number is k. Further we can replace the 

quantities 
x




 by its corresponding eigenvalue 

( )ik  and 
t




 by its eigenvalue ( )i−  by replacing 

these quantities we get, 
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and further putting into normalised poisson 

equation (7) we obtain following dispersion 

relation: 
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which is the linear dispersion relation for ion-

acoustic wave in high energetic case. So, equation 

(17) indicates that there will be two stable liner 

dispersions for ion-acoustic wave, where ions 

provide the inertia. Here we used the kappa 

distribution for electron for first order perturbative 

expansion for that we had taken the solution (13) 

as, considering the first order perturbation 

expansion and comparing both side we get, 
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which we have used in normalised poisson 

equation (7) to obtain the following dispersion 

relation. 

The phase speed of the wave is: 
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Here we assumed the electron to be non-inertial 

and ions are inertial. For that pV  should lie 

between Fi p FeV V V  . FiV  and FeV  are the 

Fermi velocities for ions and electrons 

respectively. 

Later we examined the dispersive nature by 

plotting k−  curve for different   values. 

 

 

3.2 Derivation of KdV equation 

 

    To examine the non-linearity behaviour of ion-

acoustic wave we have considered inertia less hot 

non-relativistic electrons also ion mass is 

considered as positron mass as similar to an 

electron mass, there will be similar treatment in 

[11], [13]. 

Let assume , , ,e i in n u   are slowly variable 

respect to x  and t so that they can be stretched by 

the variables called stretching variables as, 

             ( )1/2 3/2

0 ,x V t t = − =ò ò             (19) 

Where, ò  is the dimensionless smallness parameter 

and 0V is the normalised linear velocity. Now 

writing equations (5)-(7) in terms of these 

stretching variables and solving for the lowest 

ϵ order and apply boundary conditions for first 

order field variables 
( ) ( ) ( ) ( )1 1 1 1

, , ,e i in n u   and 

| | . →  

Now Poisson equation gives, 
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Also, we get these equations by comparing higher 

order terms of ò  

From continuity equation, 
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From momentum equation,  
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We will get from equation (22) and (24),  
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Using the reductive perturbation method, 

comparing suitable powers of ϵ  and doing 

algebraic operations and rearranging equations 

(21)-(26) we will obtain the KdV equation for ion-

acoustic wave, 
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Where, N is the nonlinear term and D is the 

dispersive term and ( )
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have been used. 

   To obtain the steady state solution of KdV 

equation we now introduce a transformation 

M  = −  where M is the normalised speed of 

wave, it is called the Mach number. It can be 

expressed as / Fiv V , where v  is the non-normalized 

wave velocity. These two terms are responsible for 

dispersive and nonlinear effect in ion acoustic 

mode. Again, applying boundary conditions 

2

2
| | , , , 0
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 to obtain a 

possible stationary solution [14], 
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Where,  
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 =  and 
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Now, as we saw that at a critical value of c =  

the Nonlinear term of KdV equation is not 

acceptable so KdV equation is invalid under that 

critical value of . So, we have to modify it like 

the critical condition is independent of Nonlinear 

term. 

 

 

 

 

3.3 Extended KdV equation  

 

    To derive the extended KdV equation we have 

taken the stretching variable as: 

                ( ) 3
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As previous we have equated the ϵ  terms from 

lower order to higher order and we got those 

equations: 

From continuity equation, 
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From momentum equation, 
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From equation (33), (34), (36), (37) we will get, 
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Now let ( )0 0R V u= − , so from KdV equation the 

critical value for which the nonlinear term vanishes 

that will be
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The poisson equation will be written as for
3ò , 

( )

( ) ( ) ( ) ( ) ( ) ( )
12

3 1 2 32

2 e e iA B n
x


      


= + −


 

( )

( )
( )

( ) ( ) ( )( ) ( )
1 33

1 2 32

3 e e iA B n
x x x

 
     

  
 = + −

  

Now using equations (33)-(41) and using the fact 

that the coefficient of ( )3
/    due to the critical 

condition as well as the coefficient of  
( ) ( )( )2 1

/     also vanishes. So, we will finally be 

reached to the modified KdV equation, 
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Now we take   as the relative charge density and 

rewriting the poisson equation as, 
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also adapting perturbation as, ( ) ( )1 22  = + +ò ò  

At the critical value 
c = we equate  for 

2ò  we 

get, 
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| |c − is here small dimensionless parameter, 

| |c − ò  and 1s = for 
c  and 1s = − for 

c  so, 
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after rearranging terms, we get the extended KdV 

equation as, 
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This is the extended KdV equation now if 1s =  and 

1  0N =  it will be reduced to KdV equation and if 

we take 
1  0C =  it will act as modified KdV 

equation. The condition of criticality is now 

removed and we can go for instable and stable 

condition both. 

 

3.4 NLSE and 'Peregrine' Soliton of Rogue 

Wave 

 

 Rogue waves occurred in abundance in the plasma 

surface. One way to study Rogue waves 

mathematically is based on nonlinear Schrodinger 

equation (NLSE). Using the perturbative method, 

we are going to approximate dispersion and 

nonlinearity to the lowest order. We introduce 

'Peregrine' solution [15] as the lowest order 

treatment. However, more accurate models can be 

shown by including higher-order such as third 

order and fourth-order approximations. To obtain 

an analytic solution we apply similarity 

transformations [16]. We focused on the lowest 

order solution of NLSE with the linear potential 

which is time-dependent.  

   To transform KdV to NLSE we introduce a 

Fourier expansion of field variable as: 
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0 and s  are varying very slowly with time and 

space coordinates. 

Expanding   we get a form like this: 
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Introducing a new stretching variable where 'c' is 

as group velocity, 
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Using perturbation expression changing all 

variables in terms of   and   we get, 
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Now equating the coefficients of 
ie 

with ò  from 

perturbation expansion (14) we get, 
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Again, equating the coefficient of 2ie   with 
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from perturbation expansion (14) we get, 
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Again, equating the coefficients independent of   

with 
3ò from perturbation expansion (14) we get, 
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Where, 
gc is the group velocity of wave and N is 

the nonlinear term and D is the dispersive term in 

form of (28), (29). Equating for first harmonics, 
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Where, 
1  6P D k= −  and

2

1
1
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C
Q N k

kD
= − . We see 

that   0PQ  always, so the wave is always stable. 

Equation (57) is desired NLSE.   0PQ   suggests 

that wave is creating a ' Bright type−  envelope 

solitons [17]. 

Approaching to a Peregrine 'soliton' which reads 

to:   
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We see that the solution is   and   or   and   

dependent thus waveform is nontrivial over small 

regions of  and . It is clear that 0P Q   

2 2

1 1 16PQ C N D k= − + , so plotting PQ over 

different quantities like kappa ( ) , Mach number

( )M , streaming velocity ( )0v  we can analyse 

stability properties of Rogue wave. 

 

 

4. Dynamics of the system  

 

After deriving the existence of peregrine profile 

this paper would determine how this wave 

propagates as well as how it evolves and its 

response to small perturbations. Differences in 

phase trajectory for systems exist with slightly 

different initial conditions. Similar studies on 

electron-acoustic super non-linear waves exist [18], 

[19] and also in Thomas-fermi plasma [20]. 

 

4.1 Unperturbed System 

 

Using the coordinate transformation, l V  = −  

and complex transformations, ( ) ( ) ie    =  on 

the equation (57) we obtain, 

( ) ( ) ( ) ( )

( ) ( )( )

2 2 2
3

2

2 2

0i

l l
V Q

i V l e 

  
        

    



 

 
− + + 

 

+ − + =

 

                                                                          (60) 

Comparing the real part on both sides we obtain, 
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      ( )
2 2 2

3 0
2 2
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V Q

  
     − + + =           (61) 
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  = −            (62) 

Where, 

2 2

2

2

/ 2

l
V

C
l

 
 



 
− 

 = and 
2 / 2

Q
D

l
=  

                          y





=


                                  (64) 

                   3y C D  = −                          (65) 

 

 

4.2 Perturbed System 

 

In above cases we worked with a particular system, 

has no completely left on its own. Now we shall 

investigate the evolution of a small periodic 

external driving force on the system. We choose 

the periodic force to be cosf  . We get a 

modified equation (65) as, 

              ( )3 cosy C D f   = − +              (66) 

Along with equation (65) it forms another set of 

ordinary differential equation. 

 

 

5. Results and Discussions 

 

One-dimensional hydrodynamic model and 

reductive perturbation technique is used to study 

both linear dispersive effect of an unmagnetized 

plasma in Ion Acoustic wave. Dispersion relation is 

obtained in general case which dependents on . 

 

Fig.2: Dispersion curve between ( )k vs k for 

different   values. 

 

We used 1 =  (electron-positron pair plasma) and

0 0.5u = . From Fig. 2 we see that as κ value 

increases the frequency becomes increases; result 

is quite similar to [21]. So, this dispersive curve 

shows that there exists a propagation of linear 

wave in Ion Acoustic mode as we have considered 

hot electrons. 

 
Fig.3: KdV solitary wave solution for Ion Acoustic 

mode
0 00.5, 4, 1.2,1.4,1.6u V= = = . Bump-type 

solution 

 

 
 

Fig.4: KdV solitary wave solution for Ion Acoustic 

mode
0 00.5, 4, 4.3,4.5,4.7u V= = = . Dip-type 

solution 

 

To study nonlinear characteristics, we derived KdV 

equation with non-linearity and dispersive terms. 

KdV equation describes the solitary waves with 

small amplitude. We have studied the dependence 

of plasma parameters like streaming velocity ( )0u , 

Mach number ( )M , mass ratio ( ) ,   in details. 
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     So, we can point out that solution (30) which 

can be expressed as Bump-type as well as Dip-type 

which are for Compressive and Rarefactive 

respectively.  In Fig. 3 we have plotted potential 

with different wave velocities for a fixed 4 =

value. For instance, when we take 4 =  there 

exist both Bump and Dip-type solutions. The 

amplitude of the Bump-type solution increases 

with increasing of 
0V . But as we increase further to 

the values 
0 4.3V =  the wave becomes Dip-type 

i.e., soliton becomes rarefactive. So, we can argue 

that there exists a critical value of 
0V  between 

proposed values for that this certain transition 

occurs. 

 

 
Fig.5: KdV solution for Ion Acoustic mode (both 

Bump-type and Dip-type) 
0 1.0, 1, 3,4,5eu  = = =  

 
Fig.6: KdV solitary wave 3-dimensional 

simulation for compressive solution in Ion 

Acoustic mode 
0 0.5, 4u = =  

Now we will observe the behaviour of the wave 

with different κ  values in Fig. 5. So, we have 

plotted for 3.0, 4.0, 5.0 = fixed 
0V value. Between 

4 =  and 5 =  amplitude decreases but as   

decreases to 4 to 3 the amplitude becomes Bump-

type type to Dip-type. This certain transition 

indicates that there exists a critical value of   

between 3 and 4. The results are quite relatable 

with C.-R. Choi paper [21]. Now we have studied 

the first-order solution for Rogue wave and plotted 

it against   and   also projected along three 

planes. We adopted ad hoc values i.e., 1P Q= = . In 

this soliton excitation period is to increase with 

time as well as space. The spatial and temporal 

nature of RW is clearly analysed here. The peak 

determines the intense of potential. For fixed   

value there exists a critical ( )c = value as well as 

for a fixed   we get a critical ( )c = . By 

implying perturbating method, we evaluated the 

wave envelope which is shown in this Fig. 7. 

 
Fig.7: 'Peregrine' soliton of Rogue wave plotted 

against   and  , have taken 1P Q= =  

 

Clearly if we do 
1 0N →  in Fig. 8 then PQ becomes 

negative so instability vanishes as well as the 

equation drops to KdV-NLSE. So, for KdV it 

always shows stable for that Rogue wave cannot 

generate. 

 

 
Fig.8: PQ plotted against k to find the stability, 

have taken 1, 1R = = . 
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As we have plotted PQ over k to find the critical 

value k for which it jumps from stable to instable 

mode. We conclude the critical case as for 0Q = . 

Where, 

1

1 16
c

C
k k

D N
= =  

Ion-acoustic Rogue wave is seen at laboratory [22] 

as well as stellar objects like Earth's atmosphere 

[23], Saturn's magnetosphere [24], and Solar wind 

plasma [25].     Equation (64) and (65) are the set of 

ordinary differential equations that are needed to be 

solved numerically in ordered to get the phase 

space plot of the rogue wave. 

 
Fig.9: Phase trajectory of the system with initial 

conditions ( ) ( ) ( ) ( )0 0 0 0, 0.05,0.05 ; , 8,8 ;y y = =  

( ) ( ) ( ) ( )0 0 0 0, 6,0.05 ; , 6,0.05y y = = −  For orange, 

blue and red curves respectively. It is a phase 

trajectory that is the variation of the quasi velocity 

with quasi position, as quasi-time evolves. 

 
Fig.10: Time series for systems with same initial 

conditions ( ) ( )0 0, , 2.7,0.55y =  but V = 0.9, and V 

= 0.8 for blue and orange curves respectively. 

 

This is (Fig. 10) the time-series of rogue wave. 

Here we find two possible points (attractors) around 

which the system orbits. We get the phase 

trajectory for the case when we apply a small 

periodic driving force on the system. We took the 

magnitude and frequency of the force to be small. 

The initial conditions of the two systems are taken 

ad hoc but very close to the two attractors we found 

in the previous treatment. 

     Again, we employed the numerical technique 

and obtained the phase trajectory of the perturbed 

dynamical system. Here we have provided two 

different ad hoc initial conditions very close to each 

other to get an idea about the chaos of the system. 

 
Fig.11: The amplitude and frequency of the driving 

force is given as, 0.1f = and 0.1 = . Initial 

conditions are ( ) ( ) ( ) ( )0 0 0 0, 9.3,0 , , 9.4,0y y = =  

for blue and orange curves respectively. 

 

The difference in trajectories is in due to small 

differences in initial conditions. The sparking 

feature that reveals itself here is that there are 

further two attractors very close to each other. So, 

from our treatment we can say there are 4 attractors 

of the system. 
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Fig.12: The time series for the systems with initial 

conditions ( ) ( ) ( ) ( )0 0 0 0, 0.1, 0.2 , , 0.7,0.1 .y y = − =  

 

Without actually deriving the Lyapunov exponents, 

which is bit out of scope of this paper, we can 

informally remark that the system is chaotic with 4 

attractors. 

 

6. Conclusion 

     In summary we have discussed about the 

possibilities of generation of Rogue wave whether 

it could be generated for all case or not. We have 

noted that Rogue wave is experienced for a very 

short time period of time also it will generate for 

modified KdV version. For decrement of nonlinear 

quantity, the amplitude of wave envelops decreases. 

In NLSE the Q factor is only one for which 

generation of Rogue wave can be decided. Also, we 

studied about critical values of different quantities. 

In this study we almost clear understanding of 

nonlinear excitation for Ion-acoustic mode. Phase 

trajectory of the Rogue wave has been studied for 

perturbed and isolated system, which has given us a 

brief insight into the dynamics of the system. 
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