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We have studied, the linear and non-linear properties of shocks and solitary structures of ion acoustic and electrostatic waves in 

a two-component electron-ion dense quantum plasma, by using reductive perturbation technique. Here, we have neglected 

collisions of the ions and electrons. The shocks arise due to viscous force. Here we have derived the KdV-Burgers equation 

with the help of standard reductive perturbation technique and analysed it numerically. For electrostatic wave, we have dealt in 

the quantum realm and studied the dispersion curves, shock fronts and solitary profiles. By using the standard method of 

multiple scale perturbation technique, a non-linear Schrodinger equation containing quantum effects is derived. The KdVB 

equation is transformed to the corresponding NLSE developing non-linear wave-packets called envelope solitons. In this paper 

we have also discussed time evolution of the solution of a forced KdV equation.  

 

1. Introduction 

  

Plasma is the fourth state of matter. Plasma waves 

can be in electrostatic, ion acoustic or dust acoustic 

mode. We will restrict ourselves to the discussion of 

electrostatic and ion acoustic modes [1]. The basic 

difference between the two modes mentioned above 

is that electrostatic mode depends only on the mass 

of the electrons, the ions are assumed to be infinitely 

massive i.e. stationary and ion acoustic mode [10] 
the dependence is on the ion mass but the electrons 

are assumed to be massless and to re-distribute 

themselves according to the Boltzmann relation. 

Most of the works on electron acoustic waves are for 

classical non-relativistic plasma [2]. For some 

compact astrophysical objects like the gravitational 

collapse of dying stars, formation of white dwarfs 

and neutron stars exist in extreme condition of 

density [9]. All these works use quantum 

hydrodynamic models and consider weakly-

relativistic aspects. But in extreme conditions of 
density, such as in a typical astrophysical aspect, the 

degeneracy can be relativistic. Here, both quantum 

and relativistic effects may play a vital role. The 

purpose of this paper is to investigate the linear and 

nonlinear properties of electrostatic and ion-acoustic 

mode in QHD plasma consisting of weakly 

relativistic degenerate electrons and stationary ions 

[3]. Rogue Waves are unexpectedly high amplitude 

and highly energetic single wave, which appear both 

in the open ocean and in coastal areas. Here we 

check the stability of the rogue waves from the 

NLSE [4]. We may find that KdV or KdV-type 

solitons, under an external periodic force are often 

termed as forced KdV solitons [5]. Then, we study 

the solitary structure in presence of external periodic 

force and the temporal behaviour under the influence 

of the external force [6]. This provides perfect 

agreement with the basic understanding of nonlinear 

behaviour in plasmas. Then we have tried to explain 

the observations [7][8] in plasma tail with our 

theoretical results. 

  

2. Basic Formulations 

  

In order to study the ion-acoustic and electro-static 

modes in such a plasma, we we start with the set of 

normalised equations: 
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One dimensional quantum diffraction parameter H 

is defined as 
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For, electrostatic wave, We use the equations (1) to 

(5) which deal with both ions and electrons for 

further linear and non-linear study. Similarly for ion 

acoustic wave, The electrons are assumed to have 

infinite mass and they are considered stationary. 

Only ions are mobile. So, we use only the equations 
(2) (3) and (5) which are devoid of electrons. 

 

Here, we have used the following normalization 

scheme, 
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3. Analytical Studies  

  

From the equations (1) to (5) discussed above, we 

have obtained the following dispersion relations 

which describes the effect of dispersion on the 
properties of any propagating wave in the plasma 

medium. It provides a relation between k and  . In 

the normalized equations we have a viscous force 

which is a dissipative term. So, there will be an 

imaginary part in the dispersion relation which 

corresponds to attenuation of the wave. Also, there 
is a real part which corresponds to free propagation 

of the wave.  So, the propagation wave number, k, 

is given by,  r ik k i k   . 

 

Using the perturbation, 

 
 

 

 

 

 

 

1 2

1 22

0

1 2
0

1

...

        

j jj

j j j

n nn

u u u u

   

     
              
               

ò ò  (6) 

Where, ò  is a very small parameter. From the 
linear analysis we have derive the following 

dispersion relations, 

 

a) In ion-acoustic mode: 
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Fig. 1: Real part of dispersion relation for different 

  in ion-acoustic mode 

 

 
Fig. 2: Imaginary part of dispersion relation for 

different   in ion-acoustic mode 

 

 

b) In electrostatic mode: 
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Now we will plot this to obtain the dispersion 

characteristics (Figure 3). 

  

 
Fig. 3: Real part of dispersion relation for varying 

H in ion-acoustic mode 

 

 
 

 

Fig. 4: Imaginary part of dispersion relation for 
different H in ion-acoustic mode 

 

We have used the following stretching, 
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In obtaining the KdV-Burgers equation. We use the 

standard reductive perturbation technique and 

substituting the equations (6) and (8) in the set of 

normalised equations for each of ion acoustic and 

electrostatic waves, the equation that we get after 

eliminating  2

eu ,is given by, 
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In equations (9) and (10) if the viscosity 

coefficient term 𝜂0 vanishes, equations reduce to a 
normal KdV equation. Solving the KdVB equation, 

we have got the following solution in both cases, 

212D 36R   
  [1 tanh (  )] tanh( )

N 15N
      (11) 

But, due to the difference in the values of N, D 
and R they are different in electrostatic and ion-

acoustic modes. 

  

 

Fig. 5: Solution of KdVB equation in ion-acoustic 

mode for different 0V  
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Fig. 6: Solution of KdVB equation for different 
0V  

in electrostatic mode and
0 =10 

 

 

 
  

Fig 7: Solution of KdVB equation for different 

0V   in electrostatic mode and 0 =100000 

 

Fig. 8: Solution of KdVB equation for variable H 

and 0 =10 

Fig. 9: Solution of KdVB equation for variable H 

and 
0 =100000 

We have also plotted the corresponding 3D 

parametric plots of the same. Now we are going to 

transform the KdVB equation to a NLSE equation 

and analyse the stability of the amplitude modulated 

waveform obtained from the equation. Here, we 

have obtained the complex NLSE of 1st type form 
the equation (9) as, 
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Since,  
0P Q   

 We get a waveform which is an unstable 
rogue wave. Now we try inserting a periodic forcing 

term to the RHS of KdVB equation in electrostatic 

mode to study the effect of external perturbations. 

Accordingly the KdV-Burgers equation under the 

action of external force is given by, 
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Solving this we get, 
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These above parameters express the dependence 

of amplitude and width of the Forced KdV on time, 

mathematically. 
Plotting this in 3D for N=6 and D=1 we get, 
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Fig. 10:  plotted against  for varying 
0f  in 

forced KdV equation 

Fig. 11:   plotted against   for different values of 

0f  

  

4. Results and Discussions 

In this section, we analyse both linear and non-
linear properties of two-component plasma and 

formation of solitary and shock profile both for ion 

acoustic and electrostatic mode using the standard 

reductive perturbation technique and including 

Rogue-wave study and expanded our work for 

Forced K-dv Equation. Now Fig (1) a more or less 

linear relationship between frequency and real 

wavenumber for different values of   It is clear 

that with further increase in   the graph becomes 

steeper. Fig 2 shows the exponential variation of the 

wave frequency with imaginary wave number. 

    This is because with increase in   wavelength 

decreases hence we observe an increase in wave 

number, consequently frequency increases. Fig (3) 

shows 3D real dispersion relation for different 

values of H. Here, it is evident that a system with 

larger H achieves the asymptotic value earlier than 
the one with lower H value. Hence, it can be said 

that the real dispersion relation corresponds to 

stable modes with increasing value of H. In Fig.(4) 

we find the imaginary dispersion relation between 

the wave frequency   and ik  in 2D for different 

values of H. This shows linearity for small value of 

H and with higher value of H it shows asymptotic 
behaviour. From this linear dispersion relations 

clearly shows that real dispersion is a stable mode 

where imaginary dispersion relation relates 

damping hence dissipation of energy due to viscous 

drag. 

From Fig (5) the solitary profile (symmetric) of 

KdVB equation i.e.   is plotted against ψ for 

different values of phase transition velocity in ion 

acoustic mode it is clear that both amplitude and 

width of the solitary profile increases with increase 

in 
0V .The high potential profile is prominent here. 

For electrostatic wave, when   is plotted against ψ 

for variable values of 
0V  and value is comparable to 

that of N and D then, we obtain a solitary as well as 

a shock profile as in fig. (6) and (8). We get an 

initial solitary profile for low value of   but as we 

increase the value of   it gets transformed to a 

shock profile. Here, the amplitude of graph 
increases but not so much for a very large increase 

in   value. However, the width increases. We have 

also plotted the 3D projections corresponding to 

solitary and shock profile in Fig. 7 and Fig. 9, 

respectively. From this study it is self-evident the 

solitary wave structure is formed due to a delicate 

balance between dissipative and non-linear effects. 

It is shown that the plasma under consideration 

can support only refractive solitary waves under 
certain restricted regions of plasma parameters. We 

can conclude that the solitary and shock profile 

study illustrate that these behaviours are entirely 

governed by the movement of ions. It is evident that 

for larger dissipation the shock becomes more 

prominent and the profile becomes steeper. From 

the rogue wave study of our governing equations it 

is impossible to get stable wave solution and hence 

we did not continue the rogue wave study with 

these equations. We found many instabilities in the 

corresponding plots so we neglected them. 

We have also obtained a solution for forced KdV 
equation and used some simplified parameters to 

plot them because they include external periodic 

forcing term, making our work more realistic. From 

Fig (10) it is clear that, the solution contains both 

compressive and rarefactive components. Thus, we 

can say that the solution can evolve into a 

compressive (positive amplitude of ) one, starting 

from its rarefactive counterpart (negative amplitude 

of  ). It also shows that midpoint of the soliton 

shifts from left (lower   value) to right (higher   

value) as 0f increases. The same result has been 
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reported in [4]. However, we have confirmed it for 
our dataset. For simplicity we have taken N=6 and 

D=2.The 2D projection of the same is given in Fig 

(11). Finally, we have solved the forced KdV 

equation and plotted the result in Fig 8-9. These are 

the results we have obtained from our studies. 

 

5. Application of such plasma in comet tails 

A comet has two tails-the blue plasma tail and the 

red dust tail (or Type 1 (ion)  tail and Type 2 (dust) 

 tail). The plasma tail is caused by an interaction 

between the solar wind and the cometary plasma, 

while the dust tail is by the solar radiation pressure 

to the cometary dust.  

Type I tails of active comets are straight, narrow 

plasma tails (107 – 108 km) and within few degrees, 

always point away from the sun. ‘Biermann’ 

postulated the existence of a continuous “solar 

corpuscular radiation” (solar wind) of density nsw = 
(1000cm3) and velocity (usw = 1000 km/s) that 

represents particle flux 500 times larger. 

Irregularities occur due to collisional coupling 

between radially outward plasma flows from sun 

and newly ionised cometary particles.  

Type II tails are broad and curved dust tails that 

lag behind sun-comet line. Assuming that dust 

grains have more or less constant mass density d , 

the anti-sunward radiation pressure is inversely 

proportional to heliocentric distance (dh) 

and proportional to cross section of dust 

grain (πa2), 
2 2

rad hF d d
  and sunward pointing 

gravitational force 3 3

grav hF a d .  

Dust acoustic (DA) waves evolving 

into shocklets are investigated in the comet Halley 
plasma system relaxing to Maxwellian, Kappa, and 

Cairns distributions. Here, dynamics of dust is 

described by the fully nonlinear continuity and 

momentum equations. A set of two characteristic 

wave nonlinear equations is obtained and 

numerically solved to examine the DA solitary 

pulse that develops into oscillatory shocklets with 

the course of time such as at time τ=0, symmetric 

solitary pulses are formed, which develop into 

oscillatory shocklets. The vector of the 

axis direction of the plasma tail is a sum of the 
vector of the solar wind velocity and the anti-vector 

of the orbital velocity of the comet. Consequently, 

the value of its deviation from the extended radius 

vector of the comet can serve for determining the 

solar wind velocity in that area of interplanetary 

space, where the comet is located. The 

characteristic feature of plasma tails is their 

complex structure. In the tails, plasma 
condensations, rays, ring 

structures, archwise perturbations of the tail, and 

wavy formations are often observed. The complete 

or partial separation of the plasma cometary tails is 

rather frequently observed. The model used 

usually regarded the cometary ionized tail as a 

plasma cylinder and the related magneto-

hydrodynamic (MHD) effects were considered. The 

MHD waves are excited by the Kelvin-Helmholtz 

(K-H) instability. In the head of the comet, the 

contact plane of discontinuity (i.e. the ionopause) 

between pure cometary plasma and the polluted 
solar wind plasma is unstable. Therefore, the 

interplanetary magnetic field wrapping around the 

cometary atmosphere can flow into the contact 

plane of discontinuity but not form a magnetic 

cavity [11]. After the discovery [12] of a magnetic 

field-free cavity around the nucleus of Comet 

Halley by the have been shown that such a magnetic 

field distribution might result from a balance 

between the magnetic force J × B and the neutral-

ion drag. We may take into account the effects of 

dissociative recombination and mass loading arising 
from photo-ionisation and reached the conclusions 

that the Halley ionopause and its 

adjacent ionospheric layer with a thickness 

of ∼100km may possibly remain unstable, although 

the growth rate is substantially reduced due to 

recombination. The stability analysis by McKenzie 

et al. (1990) is extended to include the effects of 

degenerate finite temperature plasma pressure; 

the results demonstrate that plasma pressure reduces 

the instability growth rate of the cavity. Then the 

stability analysis of a cometary ionosphere is 
extended to include the effects of plasma motion 

where we can arrive at the conclusion that the 

cometary ionopause cannot be at rest.  

 

6. Conclusions  

 

It is evident that for larger dissipation the shock 

becomes more prominent and the profile becomes 

steeper. It also shows how the soliton structure 

converge into a shock profile. The present 
investigation might be helpful, in understanding the 

basic features of electrostatic waves in super dense 

astrophysical objects like white dwarfs, neutron 

stars as well as in the future intense laser-solid 

plasma experiments where the relativistic electron 

degeneracy effects become important. Further 

inclusion of magnetic field and higher order 

perturbation expansion will make the work more 

realistic. However, it will be easier to use some 
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simulation techniques to study Non-linear 
differential equations of this kind rather than 

analytical method.  
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