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Modulational instability (MI) of ion acoustic waves (IAWs) in a weakly relativistic warm adiabatic unmagnetized plasma 

whose constitutes are ion fluid and q-non-extensively distributed electrons, using a reductive perturbation technique (multiple 

scales) is investigated. The domain of the stability and instability is determined. The solution of ion acoustic rogue waves 

(IARWs) are found. The effect of the physical parameters such as relativistic factor  𝑢0/𝐶 and temperature ratio 𝑇𝑖/𝑇𝑒 (𝑇𝑖 is 

the ion temperature and 𝑇𝑒 is the electron temperature) as well as the distribution parameter q on the instability of the system 

and rogue wave (RW) width and amplitude are studied. Finally, the validity of our results in various regions in astrophysical 

plasma is briefly discussed.   

 

 

1. Introduction (10 font bold) 

  

The propagation of ion acoustic waves (IAWs) in a 

weakly dispersive medium has been studied 

theoretically and experimentally by many authors 

[1-5].  The first experimental reported on IAWs is 

by Ikezi et al. [6].   Watanabe [7] have reported the 

experimental modulational instability (MI) of the 

monochromatic IAWs. Also the MI of IAWs in 

warm non-relativistic plasma has been studied by 

Jukui and He [8]. The relativistic effect must be 

considered when the particle velocity approaches to 

the velocity of light. The MI of IAWs in a weakly 

relativistic warm  plasma for different distribution 

has been studied by El-Labany [9] and El-Labany et 

al. [10, 11] The MI has been studied using non-

thermal distribution by Zhang et al. [12], non-

extensive distribution by  Bouzit et al. [13], and 

superthermal (kappa) distribution  by  Guo and Mei 

[14] and Chowdhury et al. [15]. The nonlinear 

evolutions in plasmas are investigated by different 

approximation techniques, in which one assumes 

small deviations for system from the equilibrium 

state of the linear wave. In fact multiple scales 

method [10, 11], the derivative expansion method 

(DEM) [13] and Krylov-Bogoliubov-Mitropolsky 

method (KBM) [16] lead to nonlinear Schrödinger-

type (NST) equation. However, the system of a 

weakly relativistic warm unmagnetized adiabatic 

plasma consisting of inertial ions fluid and non-

extensively distributed electrons and the rogue 

wave solution has not been investigated yet; this is 

our goal. The non-extensive statistic mechanics, 

depends on the deviations from Boltzmann-Gibbs-

Shannon (BGS) statistics. It has been applied in the 

last few decades. Renyi [17] and afterwards 

suggested by Tsallis [18] have investigated suitable 

non-extensive generalization of the BGS entropy 

for statistical equilibrium. Tsallis extended the 

standard additivity of the entropies of the nonlinear 

systems. This nonadditive entropy suggested by 

Tsallis and the generalized statistics have been 

employed in different phenomena characterized by 

non-extensivity [19-27] through the entropic index 

q which characterizes the degree of nonextensivity 

of the considered system while the standard 

extensive BGS statistics is at 𝑞 = 1 .  The 

nonextensive statistics are succeeded when applied 

to many astrophysical scenarios such as solar 

neutrino problem, stellar polytropes, and peculiar 

velocity distribution of galaxy clusters [28, 29].  

    On the other hand, there is a new nonlinear wave 

phenomenon called rogue wave (RW) or freak wave 

which is rare, singular, short-lived and high 

energetic pulse. The first observation of RW was 

introduced in ocean [30] and later in super fluids 

[31], optics [32], capillary waves [33], Bose-

Einstein condensates [34] and astrophysical objects 

[35-39]. Therefore, a number of researchers have 

theoretically investigated the RW properties [35, 

36, and 40]. The propagation of ion acoustic rogue 

wave (IARW) and its properties in an unmagnetized 

plasma medium with warm ions, electrons and 

positrons have been reported by Sabry et al. [36]. 
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Their results show that, the IARWs become 

suddenly high energetic pulse around a critical 

wave number (𝑘𝑐) and later decrease with increase 

of the 𝑘𝑐 . 

The skeleton of this manuscript is as follow: in 

section 2 we present the basic system of equations 

representing our model and we derive the NST 

equation.  In section 3 we obtain the MI and IARWs 

solution of IAWs and section 4 is devoted to 

conclusion. 

 

2. Basic equations and derivation of the 

NST equation  

  

Let us consider a two-component adiabatic 

unmagnetized collisionless weakly relativistic 

plasma that contains one warm ion species and q-

non-extensively distributed electrons. The dynamics 

of IAWs in such plasma can be described by the 

non-dimensional equations  

𝜕𝑛

𝜕𝑡
+

𝜕(𝑛𝑢)

𝜕𝑥
= 0 ,                                                    (1)                                                                             

(
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
) 𝛾𝑢 + 3𝜎𝑛

𝜕𝑛

𝜕𝑥
+

𝜕Ф

𝜕𝑥
= 0 ,                    (2)                                                               

𝜕2Ф

𝜕𝑥2
= 𝑛𝑒 − 𝑛,                                                       (3)                                                                                          

(3) 

𝑛𝑒 = (1 + (𝑞 − 1)Ф)
(𝑞+1)
2(𝑞−1)

≈ 1 + 𝛼1Ф− 𝛼2Ф
2 + 𝛼3Ф

3

+⋯ , 
,                                                                           (4)                                      

Where,   

                       

𝛼1 =
𝑞+1

2
,

𝛼2 =
(𝑞+1)(𝑞−3)

8

   𝛼3 =
(𝑞+1)(𝑞−3)(3𝑞−5)

48 }
 
 

 
 

 ,             (5) 

 n, 𝑛𝑒  are the number densities of the ions and 

electrons respectively. The flow velocity of the ions 

is u, Ф is the electrostatic potential, 𝜎 ≪ 1  is the 

ratio of ion temperature 𝑇𝑖  to electron 

temperature 𝑇𝑒 , x is the space coordinate, t is the 

time variable and the parameter q stands for the 

strength of non-extensively, and 𝛾 is the relativistic, 

given by 

𝛾 = (1 −
𝑢2

𝑐2
)
−1
2  

In the case of a weakly relativistic  𝜎  can be 

approximated by its expansion up to the second 

term .i.e. [41] 

                            γ ≈ 1 +
u2

2c2
                              (6)  

All physical quantities in Eqns. (1-4) are 

normalized as follow u by thermal velocity (𝑘𝐵𝑇𝑒/

𝑚)
1

2  , Ф  by thermal potential  (𝑘𝐵𝑇𝑒/𝑒)  , n by 

unperturbed ion density 𝑛0, x and t by Debye length 

𝜆𝐷 =  (𝑘𝐵𝑇𝑒/4𝜋𝑒
2𝑛0)

1

2 and the inverse of the ion 

plasma frequency 𝜔𝑝𝑖
−1 = (4𝜋𝑒2𝑛0/𝑚)

1

2 

respectively, where m is the ion mass,  𝑘𝐵  is the 

Boltzmann constant and e is the electron charge. To 

derive the nonlinear Schrödinger-type equation, we 

employ the general method of a multiple scales. In 

this method we introduce the independent variables 

[9] 

           
𝜏𝑖 = 𝜀

𝑖𝑡, 𝜉0 = 𝑥,

𝜉𝑖 = 𝜀
𝑖  (𝑥 − 𝜆𝑡)   (𝑖 = 1,2,… ).

}       (7a)                  

Then, the time and space derivatives in Eqns. (1-4) 

are transformed into [11] 

𝜕

𝜕𝑡
→

𝜕

𝜕𝜏0
+ 𝜀 (

𝜕

𝜕𝜏1
− 𝜆

𝜕

𝜕𝜉1
) + 𝜀2 (

𝜕

𝜕𝜏2
− 𝜆

𝜕

𝜕𝜉2
) + ⋯ ,

𝜕

𝜕𝑥
→

𝜕

𝜕𝜉0
+ 𝜀

𝜕

𝜕𝜉1
+ 𝜀2

𝜕

𝜕𝜉2
+⋯ ,

}
 

 

  

(7b) 

Where,  𝜆 characterizes the group velocity (𝜆 =
𝜕𝜔

𝜕𝑘
) 

and will be determined later. 𝜀  is a small 

dimensionless parameter representing the size of the 

perturbed amplitude. Now the dependent variables 

n, u, Ф  are expanded in terms of the expansion 

parameter 𝜀 as (EL-Labany 1995 [9] 

(
𝑛
𝑢
Ф
)

= (
1
𝑢0
0

) + ∑∑𝜀𝑚 (

𝑛𝑚
(𝑙)(𝜏1, , 𝜉1, , )

𝑢𝑚
(𝑙)(𝜏1, , 𝜉1, , )

Ф𝑚
(𝑙)(𝜏1, , 𝜉1, , )

)𝒆𝒊𝒍(𝒌𝒙−𝝎𝒕)
+𝑚

𝑙=𝑚

∞

𝑚=1

 

                                                                            (7c) 

n, u and Ф are satisfy the reality condition 𝐴−𝑙
(𝑚)

=

𝐴𝑙
(𝑚)∗

 and the asterisk denotes the complex 

conjugate. Introducing (7b) and (7c) into basic 

Eqns. (1-4) then, the first order of  𝜀 with  𝑙 = 1 

gives 

                     

𝑢1
(1)
=

�̃�

𝑘
𝑛1
(1)
,

𝑎𝑛𝑑

  Ф1
(1)
=

𝑛1
(1)

(𝑘2+𝛼1)
.
}
 
 

 
 

                           (8) 

The linear dispersion relation and group velocity 𝜆 

can be written as 
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                 �̃�2𝛾1 = 3𝜎𝑘
2 +

𝑘2

𝑘2+𝛼1
,                       (9) 

         𝜆 = 𝑢0 +
𝑘

𝛾1�̃�
(3𝜎 +

𝛼1

(𝑘2+𝛼1)
2
),                 (10) 

 

Where,   𝛾1 = 1+
3𝑢0

2

2𝐶2
 and �̃� = 𝜔 − 𝑘𝑢0. 

 

The second order harmonic terms O (𝜀2 ) of the 

reduced equations, with 𝑙 = 0 can be written as 
 

          

𝜕𝑛1
(0)

𝜕𝜉1
=

𝜕𝑢1
(0)

𝜕𝜉1
=

𝜕Ф1
(0)

𝜕𝜉1
= 0,

Ф1
(0) = 0,

  Ф2
(0) =

(𝑛2
(0)
−2𝛼2 |Ф1

(1)|
2
)

𝛼1 }
 
 

 
 

                  (11) 

provided that  
 

𝛾1�̃�
2 ≠

1

𝛼1
+ 3𝜎. 

For O(𝜀2) and  𝑙 = 1 components we have 

𝜕𝑛1
(1)

𝜕𝜏1
= 0,

  𝑢2
(1)
=

�̃�

𝑘
𝑛2
(1)
+

і

𝑘
(
�̃�

𝑘
− �̌�)

𝜕𝑛1
(1)

𝜕𝜉1
,   

 𝑎𝑛𝑑

 Ф2
(1) =

𝑛2
(1)

(𝑘2+𝛼1)
+

2і𝑘

(𝑘2+𝛼1)
2

𝜕𝑛1
(1)

𝜕𝜉1
; }
  
 

  
 

             (12) 

 

i.e. all the physical quantities are independent of 𝜏1. 

 

(a)  

 

(b) 

Fig. 1: The angular frequency (�̃� ) depicted against   

wavenumber (k):  (a) for different values of 𝑢0/𝐶 

and 𝜎 = 0.1, (b) for different values of 𝜎 and
𝑢0

𝐶
=

0.2.   Here 𝑞 = 0.55.  

 

For 𝑙 = 2 components we have, 

 

 

[𝑛2
(2), 𝑢2

(2), Ф2
(2)]

𝑇
= (𝑘2 + 𝛼1)

2[𝐴𝑛, 𝐴𝑢, 𝐴Ф]
𝑇 

|Ф1
(1)|

2
       (13)                               

 

where T  shows for the transpose and                                    

 

𝐴𝑛 = (𝑘
2 + 𝛼1) [

�̃�2

𝑘2
(
3

2
𝛾1 −

�̃�

𝑘
𝛾2) +

3

2
𝜎 + 𝐴Ф] 

 𝐴𝑢 =
�̃�

𝑘
(𝐴𝑛 − 1), 

𝐴Ф =
(𝑘2 + 𝛼1)

3𝑘2
{
�̃�2

𝑘2
(
3

2
𝛾1 −

�̃�

𝑘
𝛾2) +

3

2
𝜎

−
𝛼2

(𝑘2 + 𝛼1)
3
},  

 

 �̃� = 𝜆 − 𝑢0, 

𝛾2 =
3𝑢0
2𝐶2

 . 
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(a) 

 

(b) 

Fig. 2: The group velocity (�̃�) depicted against q:  

(a) for different values of  𝑢0/𝐶 and𝜎 = 0.1, (b) for 

different values of 𝜎and
𝑢0

𝐶
= 0.2.   Here𝑘 = 1.4. 

 

Moreover, the second-order quantities with zeroth 

harmonic are determined from 𝑙 = 0  components 

of third order O (𝜀3) and are given by, 

[𝑛2
(0), 𝑢2

(0), Ф2
(0)]

𝑇
= (𝑘2 + 𝛼1)

2[𝐵𝑛, 𝐵𝑢 ,𝐵Ф]
𝑇 

|Ф1
(1)|

2
           (14)                                                                                 

  

𝐵𝑛 =
1

�̌�
(
2�̃�

𝑘
+𝐵𝑢), 

  

𝐵𝑢 =
1

𝑧
{
�̃�2�̃�2

𝑘2
(
𝛾1

�̌�
− 2𝛾2) + 3𝜎 (�̌� +

2�̃�

𝑘
) +

2�̃�

𝛼1𝑘

−
2𝛼2�̌�

𝛼1(𝑘
2 + 𝛼1)

2
}, 

𝐵Ф =
1

𝛼1
{
𝐵𝑛(𝑘

2 + 𝛼1)
2 − 2𝛼2

(𝑘2 + 𝛼1)
2

}, 

   and 

 𝑧 = 𝛾1�̃�
2 − 3𝜎 −

1

𝛼1
 . 

 

Finally, from O (𝜀3 ) for 𝑙 = 1   components and 

using the above obtained quantities we have NST 

equation, 

і
𝜕Ф1

(1)

𝜕𝜏
+ 𝑃

𝜕2Ф1
(1)

𝜕𝜉2
+𝑄 Ф1

(1)|Ф1
(1)|

2
= 0.           (15) 

where, 

𝑃 =
−𝑘2

2�̃�𝛾1(𝑘
2 + 𝛼1)

2
× 

{

−(𝑘2 − 3𝛼1) +

(𝑘2 + 𝛼1)
3

𝑘2
(
�̃�2𝛾1
𝑘2

−
2�̃�𝛾1�̃�

𝑘
+ 𝛾1�̃�

2)
} =

1

2

𝜕2�̃�

𝜕𝑘2
 

and, 

   𝑄 =
−𝑘2(𝑘2+𝛼1)

3

2�̃�𝛾1
{(
�̃�2𝛾1

𝑘2
+ 3𝜎)(𝐴𝑛 +𝐵𝑛) +

2�̃�

𝑘
(𝛾1 −

�̃�

𝑘
𝛾2) (𝐴𝑢 +𝐵𝑢) −

2𝛼2

(𝑘2+𝛼1)
2
(𝐴Ф +𝐵Ф) +

2 (
�̃�

𝑘
)
3

𝛾2 −
3

2𝐶2
(
�̃�

𝑘
)
4

−
3𝛼3

(𝑘2+𝛼1)
4
} 

Equation (15) represents the evolution of the 

complex amplitude of the nonlinear IAWs 

propagating in a weakly relativistic warm with q-

non-extensively electrons on the basis of the fluid 

model in the finite wavenumber region. 

3. MI and IARWs  

  

In this section, we study the MI of the IAWs in an 

unmagnetized adiabatic plasma. Consider a plane 

wave solution of the NST equation (15) in the form 

[29] 

             Ф = (Ф0 + 𝛿Ф)𝑒𝑥𝑝(𝑖𝑄|Ф0|
2𝜏)             (16) 

Where Ф0 is a real constant amplitude perturbation 

and the development of a small modulation 𝛿Ф 

satisfies𝛿Ф ≪ Ф0 . Substituting Eq. (16) into Eq. 

(15) we obtain 

і
𝜕𝛿Ф

𝜕𝜏
+ 𝑃

𝜕2𝛿Ф

𝜕𝜉2
+ 𝑄(Ф0

2𝛿Ф+Ф0
2𝛿Ф∗) = 0.  (17) 

Where,  Ф = Ф1
(1)

 and 𝛿Ф∗ is the complex 

conjugate of 𝛿Ф. Let assume that  𝛿Ф = U+ iV   
and (U, V) = (𝑈0, 𝑉0)exp(iKx − iΩτ)  , then we get 

the nonlinear dispersion relation for the amplitude 

modulation 

                         Ω2 = 𝑃2𝐾2(𝐾2 − 𝐾𝑐
2)                (18) 

where 𝐾𝑐 = [2𝑄Ф0
2/𝑃]1/2 , which is the critical 

wavenumber. 

The nonlinear dispersion relation (18) shows that 

the IAWs are modulation stable forPQ < 0  in the 
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presence small perturbation, since Ω is always real 

for all values of K. On the other hand, when  PQ >

0  the IAWs are unstable and MI would set in as Ω   

becomes imaginary. This occurs when𝐾 < 𝐾𝑐. 

Moreover, the NST equation (15) have a variety of 

solutions from which is the rogue wave solution   

developed by Darboux Transformation Scheme is 

localized in both 𝜉   and  𝜏 . The first-order rogue 

(rational) wave solution of the NST equation (15) in 

the unstable region (PQ > 0 ) are given by [42] 

    Ф(𝜉  , 𝜏) = √
2𝑃

𝑄
[

4(1+4𝑖𝑃𝜏)

1+16𝑃2𝜏2+4𝜉2
− 1] 𝑒(2𝑖𝑃𝜏)      (19) 

The numerical analyses of Eq. (9) to examine the 

properties of the IAWs for different values of 

relativistic factor   (𝑢0/𝐶) and temperatures ratio 𝜎 

(𝑇𝑖/𝑇𝑒) at the value of the nonextensive parameter 

q=0.55 are shown in Figs (1.a) and (1.b). The phase 

velocity decreases with increasing 𝑢0/𝐶 (Fig. (1.a)) 

and is increases with increasing 𝜎  (Fig. (1.b)). 

Figures (2.a) and (2.b) show the variation of the 

group velocity with the non-extensive parameter q 

for different values of 𝑢0/𝐶 and𝜎, given in Eq. (10).  

These Figures show that the group velocity is 

independent on  𝑢0/𝐶  but increases with the 

nonextensive parameter (q), and increases with 

increasing𝜎. 

 

 

(a) 

 

 
(b) 

 

Fig. 3: Contour plot of the product 𝑃𝑄 = 0, against 

k and 𝑢0/𝐶 :  (a) for 𝜎 = 0.1 , (b) for 𝜎 = 0.2 . 

Here  𝑞 = 0.55 , where the (white) yellow region 

represents the (stability) instability region. 

 

On the other hand, we investigated the domains of 

the stability and instability of the ion acoustic 

waves on the basis of the NST equation (15). The 

variation of the critical wavenumbers (higher and 

lower wavenumbers) with 𝑢0/𝐶 for different values 

of  𝜎 is shown in Fig. 3a and Fig. 3b. We noticed 

that the upper critical wavenumber decreases with 

increasing 𝜎  whereas, the lower wavenumber 

remains constant.  This mean that the increase of 𝜎 

leads the system to gain more energy, making the 

system more unstable. The variation of the critical 

wavenumbers with 𝜎  for different values of the 

non-extensive parameter q is shown in Figs (4.a) 

and (4.b). It is obvious that, the upper critical 

wavenumber increases with increasing the non-

extensive parameter (q) and we have only one lower 

wavenumber which decreases with the increase of𝜎. 

Also the stability regions increase with the increase 

of q. This means that increasing the value of q 

makes the system more stable. The effect of the 

increase the non-extensive parameter q on the 

stability and instability of the system is illustrated in 

Figs (5.a) and Fig (5.b).  It is clear that the critical 
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wavenumbers increases with increasing q and the 

stable region becomes narrower with the increase of 

𝜎. 

 
(a) 

 

 
(b) 

 

Fig. 4: Contour plot of the product𝑃𝑄 = 0, against 

k and 𝜎 :  (a) for   𝑞 = 2.87 , (b) for  𝑞 = 4 .   

Here
𝑢0

𝐶
= 0.2 , where the (white) yellow region 

represents the (stability) instability region. 

 

Now, we study the effect of the ratio 𝑢0/𝐶 on the 

rogue wave amplitude and the width. We found that 

increasing 𝑢0/𝐶  increase the width and the 

amplitude (as shown in Figs. (6.a) and (6.b)). 

Figures (7) and (8) show the effect of increasing the 

non-extensive parameter (q) and 𝜎 respectively on 

the rogue wave amplitude.  Figure (7.a) shows a 

small variation the width and the amplitude of the 

rogue wave decrease    with increase of q for q < 1 

but decrease with large variation  for  𝑞 > 1  as 

shown in Fig. (7.b). Finally, for  𝑞 < 1  we notice 

that the amplitude of the rogue wave decreases with 

increase of 𝜎 as shown in Fig. (8.a) but increases 

with the increase of 𝜎 for  𝑞 > 1   and the system 

goes to be more unstable as shown in Fig. (8.b). 

 
(a) 

 

 
(b) 

Fig. 5: Contour plot of the product𝑃𝑄 = 0, against 

k and q (a) at 𝜎 = 0.1  and (b) at𝜎 = 0.2, where the 

(white) blue region represents the (stability) 

instability region. Here
𝑢0

𝐶
= 0.1. 
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(a) 

 
(b) 

Fig. 6: The 3D plot of the IARWs amplitude for 

different values of  𝑢0/𝐶  (a) Here 
𝑢0

𝐶
= 0.1 and 

(b)
𝑢0

𝐶
= 0.15. Here 𝜎 = 0.2. 

 

 

 
(a) 

 

 

 

 

 

 
(b) 

Fig. 7: The 2D plot of the IARWs amplitude for 

different values of q where (a) 𝑞 < 1  and (b)𝑞 > 1. 

 

(a) 

 

 

(b) 

Fig. 8: The 2D plot of the IARWs amplitude for 

different values of 𝜎 where (a) 𝑞 < 1  and (b) 𝑞 >

1. 
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4. Conclusion   

In this manuscript, we employed the nonlinear 

hydrodynamic equations of a weakly relativistic 

unmagnetized adiabatic plasma system including 

warm ions and non-extensively distributed 

electrons. Using the multiple scales method a NST 

equation is investigated.  This method is more 

general than other methods (such as the derivative 

expansion method) dependents on the elimination 

of the secular terms. The coefficients of NST 

equation are found to be strongly dependent on both 

ion temperature through 𝜎  ( = 𝑇𝑖/𝑇𝑒 ), the 

nonextensive parameter and the ion streaming 

velocity through (𝛾1 , 𝛾2). Moreover we investigated 

the effect of 𝜎 and relativistic factor (𝑢0/𝐶) on the 

domain of the stability (𝑃𝑄 < 0) and the unstable 

region (𝑃𝑄 > 0) by determining the critical wave 

number at which the sign of PQ changes from 

positive to negative and vice versa. The width and 

the amplitude of the IARWs are found to be 

dependent on the parameters of the system. To 

show the validity of our results, we considered the 

cold nonrelativistic limit ( 𝜎 = 0  and
𝑢0

𝐶
= 0) of the 

present work which is found to agree with the work 

done previously by Bains et al. [29]. Finally, the 

existence of weakly relativistic warm plasma and 

non-extensively distributed electrons in 

astrophysics environments such as solar neutrino 

problem, stellar polytropes and galaxy cluster as 

well as confinement fusion plasma are revealed by a 

large number of observations [28, 29].  
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