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We have studied a static conformally flat cylindrical symmetric perfect fluid distribution with improved energy-
momentum tensor developed by Ray and Smalley and obtain an exact solution in the context of Einstein-Cartan 
Theory. The explicit expressions for pressure, spin, energy density, expansion, rotation and shear have also been 
found. 
 
 
 
 
 
1. Introduction 
 
There are several solutions with different symmetries 
in various theories of gravitation; conformally flat 
solutions are among them. However, conformally flat 
solutions take a special status in all theories of 
gravitation as the number of unknown functions are 
reduced and are also helpful to interpret the surplus 
rotation velocity of the celestial objects far from the 
center of galaxies. Moreover, these solutions are very 
useful for cosmology. For example, in an exact 
Friedmann–Robertson–Walker (FRW) universe, the 
Weyl tensor always vanishes. Therefore, an arbitrary 
scale factor is a solution of a void universe.  
 
    In the context of the general theory of relativity 
(GTR), several authors have studied various static 
and non-static conformally flat solutions. It was 
Buchdahl [1] who studied a static conformally flat 
Schwarzschild interior solution, and then Burman [2] 
has studied the geodesic of the particles in 
conformally flat-space-time.  Singh and Abdussattar 
[3] have studied a non-static conformally flat 
Schwarzschild interior solution and Roy and Bali [4] 
have studied a non-static conformally flat spherically 
symmetric space-time. Pandey and Tiwari [5] have 
studied a conformally flat spherically symmetric 
charged perfect fluid distribution. In [6], van den 
Berg has studied perfect fluid solutions performing a 
conformal transformation on the Schwarzschild  
 

 
exterior space-time. Moreover, Hansraj [7] 
constructed a perfect fluid by performing a conformal 
transformation on a known non-conformally flat 
vacuum Schwarzschild exterior solution and shown 
that all perfect fluid space-times conformal to the 
exterior Schwarzschild line element are necessarily 
static. Hansraj et al. [8] also studied expanding, 
shearing and accelerating isotropic plane-symmetric 
universe with conformal Kasner geometry. 
 
    In the context of Einstein-Cartan Theory (ECT)  
[9–15], Bedran and Som [16] studied a conformally 
flat solution of a static dust sphere. Kalyanshetti and 
Waghmode [17] considered the static conformally 
flat solutions for spherically symmetric perfect fluid 
distribution. Katkar and Patil also studied a static [18] 
and a non-static [19] conformally flat spherically 
symmetric solutions.   
      
     Although cylindrically symmetric solutions are 
widely investigated in the frame-work of ECT, for 
example, Prasanna [20], Soleng [21], Tsoubelis [22] 
and Manna et. al. [23] studied some exact solutions 
for cylindrically symmetric perfect fluid 
distributions. But, the conformally flat cylindrically 
symmetric solutions are seldom studied. Hence, here 
we want to study a conformally flat cylindrically 
symmetric solution in the context of ECT. In this 
paper, we study a static conformally flat cylindrically 
symmetric perfect fluid distribution with improved 
energy-momentum developed by Ray and Smalley 
[24]. The structure of this paper is as follows: In Sec. 
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2, we discuss metric and curvature. In Sec. 3, we set 
up the field equations and obtain their exact 
solutions. Finally, we present our conclusion in Sec. 
4. 
 
2. Metric and Curvature 
  
The Cartan structures of equations in Einstein-Cartan 
manifold [25] are  
 

    dθ୧ + ω  ୨
୧ ∧ θ୨ =

ଵ

ଶ
Q   ୨୩

୧ θ୧ ∧ θ୩                       (1) 

 
    Ω  ୨

୧ = d ω  ୨
୧ + ω   ୩

୧ ∧ ω    ୨
୩                                  (2) 

 
    Q  ୨୩

୧ − δ ୨
୧ Q  ୪୩

୪  − δ  ୩
୧  Q   ୨୪

୪ = k S  ୨୩
୧  ,                (3) 

 

Where,  k =
଼஠ୋ

େర  is coupling constant and  S  ୨୩
୧   are the 

independent components of spin tensor. The classical 
description of the spin tensor is defined by the 
relation  S  ୨୩

୧  = S୨୩U୧, where S୨୩ is tensor of the 

density of spin and U୧ is the four velocity of fluid 
which obeys the Weyssenhoff condition [26], 
 

            S୧୨
    ୨

 = S୧୨U
୨ = 0.                                          (4) 

           
    A static, conformally flat cylindrical-symmetric 
perfect fluid is considered to be given by the space-
time metric 
 
dsଶ = eଶ஛[−eଶ஝dtଶ + eଶ(ஜି஝)(drଶ + dzଶ)

+ rଶeିଶ஝dϕଶ],                          (5) 
 
Where, λ, conformal factor is function of r only and 
metric functions μ, ν are also function of r only. 
The orthonormal tetrads of given metric are given by 
  
𝜃଴ = 𝑒ఒାఔ𝑑𝑡, 𝜃ଵ = 𝑒ఒାఓ ିఔ𝑑𝑟,  
  𝜃ଶ = 𝑟𝑒ఒିఔ  𝑑𝜙, 𝜃ଷ  = 𝑒ఒାఓିఔ𝑑𝑧.  (6) 

 
So the tetrads form of the stationary static 
cylindrically symmetric metric can be written as 
 

    𝑑𝑠ଶ = 𝑔௜௝𝜃௜  𝜃௝ ,                                              (6. 𝑎) 
 
along with the metric tensor  
 
    𝑔௜௝  =  𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (−1, +1, +1, +1).  
 
We consider the spin of individual particles are 
aligned along the symmetry axis (z axis) in a 
comoving frame, so that the only non-vanishing 
components are 
 

     𝑆௜௝ = 𝑆ଵଶ = −𝑆ଶଵ = 2𝑆.                                   (7) 
Now using Cartan structure of equations (1-3) along 
with (6), (6.a) and (7), we get the components of 𝜔௜௝ . 
Using the value of 𝜔௜௝  we can obtain curvature two-
form Ω  ௝

௜  and hence Ricci tensors and Scalar 
curvature. Here, the non-zero components of Ricci 
tensor taking 𝜅 = 1   are as follows:  
 

𝑅଴଴ = 2𝑆ଶ − (2𝜆ᇱ𝜈ᇱ + 𝜈ᇱᇱ +
𝜈ᇱ

𝑟
+ 𝜆ᇱᇱ 

          +2𝜆ᇱଶ +
𝜆ᇱ

𝑟
)𝑒ଶ(ఔିఒିఓ)                                    (8) 

 

𝑅ଵଵ = (2𝜈ᇱଶ + 2𝜆ᇱ𝜈ᇱ + 3𝜈ᇱᇱ +
𝜈ᇱ

𝑟
+

𝜇ᇱ

𝑟
 

          −𝜆ᇱᇱ − 𝜇ᇱᇱ −
𝜆ᇱ

𝑟
)𝑒ଶ(ఔିఒିఓ)                            (9) 

 

𝑅ଶଶ = (𝜈ᇱᇱ + 2𝜈ᇱ𝜆ᇱ − 2𝜈ᇱଶ +
2𝜈ᇱ

𝑟
 

              −𝜆ᇱᇱ −
𝜆ᇱ

𝑟
)𝑒ଶ(ఔିఒିఓ)                                 (10) 

 
𝑅ଷଷ = 𝑒ଶ(ఔିఒିఓ)(𝜈ᇱᇱ − 2𝜈ᇱଶ + 2𝜈ᇱ𝜇ᇱ  

       +2𝜈ᇱ𝜆ᇱ +
𝜈ᇱ

𝑟
−

𝜇ᇱ

𝑟
− 𝜆ᇱᇱ − 𝜇ᇱᇱ −

𝜆ᇱ

𝑟
)  

                                                                           (11) 
 
𝑅଴ଶ = −(𝑆ᇱ − 𝑆𝜈ᇱ + 𝑆𝜇ᇱ + 𝑆𝜆ᇱ)𝑒ఔିఓିఒ. 
                                                                           (12) 

 
𝑅ଶ଴ = −(𝑆ᇱ + 𝑆𝜈ᇱ + 𝑆𝜇ᇱ + 𝑆𝜆ᇱ)𝑒ఔିఓିఒ. 
                                                                          (13) 
 
Here, equations (12) and (13) give 𝜈 = 0  or constant. 
We get the expression for spin as follows: 
 
    𝑆 = 𝑆଴𝑒ି(ఓାఒ),                                    (14) 
 
Where,  𝑆଴  is constant. Now we have the Ricci's 
scalar curvature as follows: 
 

𝑅 =  −2𝑆ଶ + 2(𝜆ᇱଶ − 𝜆ᇱᇱ −
𝜆ᇱ

𝑟
 

         −𝜇ᇱᇱ)𝑒ିଶ(ఒାఓ).                                 (15) 
 

 
3. Field Equations and Exact Solution 
 
We assume the material distributions to be that of a 
perfect fluid constituted of spin particles which are 
Weyssenhoff type. Here, we have considered Ray 
and Smalley [24] energy-momentum tensor for the 
perfect fluid and is given by 
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𝑡௜௝
ோௌ = {(1 + 𝜖)𝜌 + 𝑃}𝑈௜𝑈௝ + 𝑃𝑔௜௝ 

           +𝑈(௝ 𝑆௜)௞
   𝑈௞̇ − 𝜔ഥ(௜}

௞ 𝑆௝)௞
    

+ 𝑈(௜𝑆   ௝)
௞ 𝜔ഥ௞௟𝑈௟ ,                  (16) 

 
Where, dot denotes the covariant derivatives with 
respect to  𝑈௜ and (1 + 𝜖)𝜌  is the energy density, P 
is the pressure and 𝜔ഥ௜௝  is the spin angular velocity of 
the fluid. For perfect fluid using the corrected energy-
momentum tensors [24] are 
 
𝑡௜௝

ோௌ =  𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑚, 𝑃ଵ, 𝑃ଶ, 𝑃ଷ),                        (17) 
 

Where, 
𝑃ଵ = 𝑃 − 2𝑆ଶ, 𝑃ଶ = 𝑃 − 2𝑆ଶ, 

  𝑃ଷ = 𝑃    𝑎𝑛𝑑  𝑚 = (1 + 𝜖)𝜌 .                         (18) 
 

𝑆ଶ − (2𝜆ᇱᇱ + 𝜆ᇱଶ +
2𝜆

𝑟
 

                             +𝜇ᇱᇱ)𝑒ିଶ(ఒାఓ) = 𝑚.               (19) 
 

 𝑆ଶ + ቆ
𝜇ᇱ

𝑟
− 𝜆ᇱଶቇ 𝑒ିଶ(ఒାఓ) = 𝑃 − 2𝑆ଶ.           (20) 

 

𝑆ଶ + (𝜇ᇱᇱ − 𝜆ᇱଶ)𝑒ିଶ(ఒାఓ) = 𝑃 − 2𝑆ଶ.             (21) 
 

𝑆ଶ + ቆ−
𝜇ᇱ

𝑟
− 𝜆ᇱଶቇ 𝑒ିଶ(ఒାఓ) = 𝑃.                    (22) 

 
Hence from equations (20) and (21) we get,  
 

   𝜇ᇱᇱ =
ఓᇲ

௥
,                                         (23) 

 
and from  equations (14) and (20-22) we get,  
 

 𝜇 = 𝜇଴𝑟ଶ = −
(ௌబ௥)మ

ଶ
.                    (24) 

 
    Now, for the conformal flatness, tetrad 
components of Weyl tensor are zero. Hence, we get, 
 

𝑅௔௕௖ௗ =
1

2
(𝑅௕௖𝜂௔ௗ − 𝑅௕ௗ𝜂௔௖ − 𝑅௔௖𝜂ௗ௕ + 𝑅௔ௗ𝜂௕௖)  

             −
1

6
𝑅(𝜂௕௖𝜂ௗ௔ − 𝜂ௗ௕𝜂௔௖).                   (25) 

 
Imposing the condition of conformally flat of 
equation (25) we get, 

𝜆 =  𝑙𝑛
1

1 + 𝑆଴
ଶ 𝑟ଶ

.                                            (26) 

 
The expression for the pressure, spin and energy 
density are as follows: 
 

𝑃 = 𝑆଴
ଶ(1 − 𝑆଴𝑟ଶ)ଶ𝑒ௌబ

మ௥మ
,            

      

𝑆ଶ = 𝑆଴
ଶ(1 + 𝑆଴

ଶ𝑟ଶ)ଶ𝑒ௌబ
మ௥మ

,          
       

                  𝑚 = 4𝑆଴
ଶ(2 − 3𝑆଴

ଶ𝑟ଶ)𝑒ௌబ
మ௥మ

.              (27) 
 

Using equations (24) and (26) we get the conformally 
flat line element as follows: 
 

𝑑𝑠ଶ =
1

1 + 𝑆଴
ଶ𝑟ଶ

ൣ𝑑𝑡ଶ + 𝑒ିௌబ
మ௥మ

(𝑑𝑟ଶ + 𝑑𝑧ଶ)

+ 𝑟ଶ𝑑𝜙ଶ൧.              (28) 
 

We know the expansion  (Θ) monitors the 
convergence/divergence of the worldliness tangent to 
4-velocity field, while the shear (𝜎௜௝) and the 
vorticity (𝜔௜௝) tensors describe kinematic 
anisotropies and the rotational behaviour of the field, 
respectively, and 4-acceleration ( �̇�௜) vector implies 
that the aforementioned worldliness are  autoparallel 
curves or not. Here, the kinematical parameters like 
expansion, shear, vorticity and acceleration, taking 
𝑈௜𝑈௜ = −1 are 
 
       Θ = 0, 
       𝜎௜௝ = 0, 

        𝜔ଵଶ = −𝜔ଶଵ = 𝑆଴ (1 + 𝑆଴
ଶ𝑟ଶ)𝑒ௌబ ௥ , 

        �̇�௜ = 0.                                                        (29) 
 
4. Conclusions 
 
In this study, we have obtained static, cylindrically 
symmetric, conformally flat interior solutions in the 
context of ECT using corrected energy-momentum 
tensor for perfect fluid developed by Ray and 
Smalley [24]. From equation (29), we have obtained 
a solution that is expansion free and shear free but 
rotating with zero acceleration. Hence, the motion of 
particles inside the cylinder will be geodesic.  
 
Also, we observed that the spin of the gravitating 
matter produces a repulsive effect on pressure and 
influences the energy density, and also the geometry 
of space-time. We hope that our solution will be 
useful to study of rotating back holes, to study of 
FRW like models and for future study of cosmology. 
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