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We present approximate solutions of the both the modified Klein-Gordon (MKGE) and modified Schrodinger equation (MSE)
containing the modified Hulthén and modified Kratzer potential using the procedure of Bopp’s shift method and perturbation theory in
addition to the Greene—Aldrich approximation method of handling centrifugal barriers. This study is conducted in the relativistic and
nonrelativistic non-commutative 3-dimensional real space (RNC: 3D-RS) and (NRNC: 3D-RS) symmetries, respectively. The Hulthén—
Kratzer potential model is extended to include new radial terms. Furthermore, this potential model is proposed to study some selected

diatomic molecules, namely N2, I, CO, NO and HCI. The ordinary Bopp’s shift method and perturbation theory are surveyed to get

generalized excited states energy as a function of the shift energy and the energy E 1 of the HKP model. Furthermore, the obtained

perturbative solutions of the discrete spectrum were dependent on Gamma function, the discreet atomic quantum numbers ( ] , / S, m)

and the potential parameters (VO,(Z ,Ve,De ), and the NC-parameters, which are generated with the effect of (space-space) non-

commutative properties. We have also applied our results on diatomic-molecules with spin-0 and spin-1, and have shown that the
modified Klein-Gordon equation MKG under the MHKP model becomes similar to the Duffin—Kemmer equation.

1. Introduction

It is well recognized that the Hulthén potential [1] plays an
essential role in several fields. For example, it is used to study
the optical properties of quantum dots [2] , cosmic strings in the
relativistic scales [3] and it has been applied to sub-atomic and
atomic scales, such as nuclear and particle physics, atomic
physics, condensed matter and chemical physics [4,5].
Furthermore, it is one of the important shortrange potentials in
physics, which finds applications in a wide range of physical
systems [5, 6]. In addition to that, it characterizes two important
features, at a short distance; its behavior becomes identical to the
screened coulomb potential, while for large distance, it becomes
a decreasing exponential potential [4]. It is worth noting that the
Kratzer-like potential can be used to describe the atomic,
molecular physics, vibrational and rotational spectroscopy [7].

Currently, researchers became more interested in the state of
combination between than two potentials or more than two
potentials, such as a combination between the modified Kratzer
potential plus screened Coulomb potential [8] and between
Hellmann and Kratzer potential model [9]. We have studied the
solutions of the modified Schrodinger equation with generalized
Hellmann—Kratzer potential model in the symmetries of
NRNCQM[10].

In 2019 H., Louis et al. studied the K-state solutions to the
Dirac equation for the quadratic exponential-type potential plus
Eckart potential and Coulomb-like tensor interaction using
Nikiforov-Uvarov method [11]. We have studied the Klein—
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Gordon equation with modified Coulomb potential plus inverse-
square root potential and the modified Coulomb plus inverse-
square potential in the non-commutative 3-dimensional space
[12-13].

Here we present a new model to describe Heavy-Light Mesons
in the extended non-relativistic quark model under a new
modified potential containing Cornell, Gaussian and inverse
square terms in the symmetries of NCQM [14]. Very recently, J.
A., Obu et al. [6] applied the Hulthén—Kratzer potential model to
the study of the diatomic molecules N», I, CO, NO and HCIL. In
this work, we are motivated by many recent studies, such as the
non-renormalizable electroweak interaction, quantum gravity,
string theory, the noncommutative relativistic and nonrelativistic
quantum mechanics that has attracted much attention of physical
researchers [15-21]. The noncommutativity in space-time is not a
new idea, it was first proposed by W. Heisenberg in 1930 and
then it was developed by H. Snyder in 1947. Currently, there are
several studies concerning the search for solutions to the various
three basic equations in the relativistic and nonrelativistic state.

This work focuses on applying principle and the foundations
of non-commutative theory [22-32]. The main objective to this
work is to develop the work done by J. A., Obu, et al. and
expanding in the symmetries of NCRQM and NCNRQM for the
purpose to get more investigation in the microscopic scales and
from achieving more scientific knowledge of elementary
particles in the field of nanotechnology. The relativistic and
nonrelativistic energy levels under modified Hulthén—Kratzer
potential model have not been obtained yet in the context of the
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NCRQM and NCNRQM. Furthermore, we hope to find new
applications and profound physical interpretations using a new,
updated model of the modified Hulthén—Kratzer potential, which
has the following form:
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The potential parameters will be defined in the next section.
The new structure of RNCQM and NRNCQM based to new
covariant non-commutative canonical commutations relations
CNCCRs in Schrodinger, Heisenberg and Interactions pictures
(SP, HP and IP), respectively, as follows [33-42]:
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We have generalized the CNCCRs to include HP and IP. It
should be noted that, in our calculation, we have used the natural
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unitsc =fi=1. Here heﬁv is the effective Planck constant,

0" =&""0 (6 is the non-commutative parameter), which are
infinitesimals parameter if compared to the energy values and

elements of antisymmetric 3 x 3 real matrix and O v 1S the

identity matrix. The symbol (*) denote to the Weyl Moyal star
product, which is generalized between two ordinary functions
f (x)g(x) to the new modified form f1 ()Ac)é()%) = f| (x)* g(x) in
the symmetries of (RNC: 3D-RS) and (NRNC: 3D-RS) as
follows [43-50]:
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higher-order terms non-commutative  parameter.

) in the Eqn. (3)
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presents the effects of space-space non-commutative properties.
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Furthermore, the new unified two operators
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fﬂ (l‘)— (xﬂorp# Xt) and 5#(t)—(x#0rp“ Xl‘) in HP and IP

are depending on the corresponding new  operators
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represented in three relativistic quantum mechanics pictures,
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whereas the dynamics of new systems

is described by

the following equation of motion in the modified Heisenberg
picture, as follows:
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The operators H :rm ¥ and H rh "k are the free and global

Hamiltonian for Hulthén—Kratzer potential model while H ::ir

Ik
and H™

nep the corresponding Hamiltonians for MHKP model.

The present investigation aims at constructing a relativistic
and non-relativistic non-commutative effective scheme for the
modified Hulthén—Kratzer potential model. The rest of this
manuscript is organized as follows: In the next section, we
briefly review the Klein-Gordon equation with Hulthén—Kratzer
potential model based on Ref. [6]. Section 3 is devoted to the
study of modified Klein-Gordon equation MKGE by applying
the ordinary Bopp's shift method and to obtain the effective
potential of MHKP model. We find the expectation values of the

radial terms,1/7, 1/1’3 and1/7”4 . Section 4 is devoted to
obtaining the results and a discussion of the energy shift for the

generalized n" excited states, which is produced by the effects
of perturbed spin-orbital and the generated new Zeeman
interactions in the RNCQM. Then, we determine the energy
spectra of diatomic molecules N, I, CO, NO, and HCI under
MHKP model in the RNCQM symmetries. After that, we discuss
the non-relativistic limits. The final section will be devoted to
results and conclusions.
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2. Revised Bound-state Solutions of Klein-Gordon Equation
for Arbitrary l-state with Linear Combination of Hulthén
and Kratzer Potentials in RQM

As already mentioned, our objective is to obtain the spectrum of
modified Klein-Gordon equation with a modified Hulthén—
Kratzer potential model in (RNC: 3D-RSP) and (NC: 3D-RSP)
symmetries, we need to revise the corresponding Hulthén—
Kratzer potential model in symmetries of ordinary relativistic
quantum mechanics RQM [6]
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Where, D, is the dissociation energy, 7, is the equilibrium inter-
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molecular separation, Vo =Zea is the depth of the potential,
B=-2rD,

« is the adjustable screening parameter, and

_ 2
C=D,r,
useful to make a summary for the Klein—-Gordon equation KGE

with Hulthén—Kratzer potential model for a system of reduced
mass A of diatomic molecules such as N, I, CO, NO and HCI

in 3-dimensional relativistic quantum mechanics [6]:

. To achieve this goal of our current research it is
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The vector potential V/, . (r) is due to the four-vector linear

momentum operator A* (thk (I”),zzj = 0) and the space-time

scalar potential S, ,(r), E, represents the relativistic

nl
rotational-vibrational energy eigenvalues in 3-dimensions, #
and / represents the vibrational and rotational quantum numbers,
respectively. Since the Hulthén—Kratzer, potential model has
spherical symmetry, allowing the solutions of the time-
independent KGE of the known form

"P(I”, A (0) =R1 I(I”)Ylm (9, (0), where Ylm (9, (0) denotes the

spherical harmonic function, and Ais the ordinary 3-
dimensional Laplacian operator. To eliminate the first order
derivative, we introduce a new radial wave function to the form

U, (r) =rR, (r), thus Eqn. (7) become:
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With the equal scalar and vector potential being taken as the
generalized hyperbolic potential, V), (7’) =S, (I’)We obtain

the following second order Schrodinger-like equation:
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The shorthand notation VM (7’): 2(Enl + ,u)thk (r)
\+1
+ ( > ) and E ;:"k = u° — E, The complete wave function
p .

as a function of the Jacobi polynomial and the spherical
harmonic functions is given by [6]:
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D,
_0[2 (En, + ,u) and Bn is the normalization constant. The

relativistic energy E, of the potential in Eqn. (6) are given by
[6]:
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3. Solutions of MKGE under MHKP Model in
(RNC:3D-RS) and (NRNC: 3D-RS) Symmetries

At the beginning of this section, we shall give and define a
formula of modified Hulthén—Kratzer potential model in the
symmetries of relativistic noncommutative three-dimensional

21
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real space (RNC: 3D-RS). To achieve this goal , it is useful to
write the modified Klein-Gordon equation by applying the notion
of Weyl-Moyal star product, which we have seen previously in
the the Eqn. (3), on the differential equation that is satisfied by

the radial wave function U, (r) in Eqn. (8), thus, the radial wave
function U, (r) in (RNC: 3D-RS) symmetries become:
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We know that the Bopp’s shift method has been applied
effectively and has succeeded in simplifying three basic
equations modified Schrédinger equation MSE ,MKGE and
modified Dirac equation MDE with the notion of star product to
the Schrdodinger equation SE, KGE and Dirac equation DE with
the notion of ordinary product, respectively [12-14,36,40-47].
The results of the application of this method were very useful
and yielded promising results in many physical and chemical
fields. The method reduced MSE, MKGE and MDE to the SE,
KGE and DE, respectively, under the simultaneous translation in
space. The CNCCRs with star product in Eqn. (2) become new
CNCCRs without the notion of star product as follows [41-49]:

[x xJ |_ )J—l@

The generalized positions and momentum coordinates ()ES ,p° )
u u

Ii+1)
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and ()EH 5 ﬁH Xt) in the symmetries (RNC: 3D-RS) and (NRNC:
u u
3D-RS) are defined in terms of the corresponding coordinates

(xi,pf) and (xf,pf) via [43-51]:
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the symmetries of (RNC: 3D-RS) and (NRNC: 3D-RS) [43-47],

. d . . . .
with 7,. denote to the diatomic molecule distance in NCQM. It

is convenient to introduce a shorthand notation which will save

This allows us to find the operator rdz

.. d ~ . .
us a lot of writing 7, —7 and r; —> r>. In this notation the

- -

previously relation reduced to =7 =r"—~L0O®. The
- >

coupling L® equal(LX®12+Ly®23+LZ®l3) , here L_,

Ly andLZ are present the usually components of angular

-

momentum operator L while the new non-commutative

parameter ®uv equal 9/”/ 2. According to the Bopp shift

method, Eqn. (12) becomes similarly to the following like the
Schrodinger equation [12,13,23] (without the notions of star
product):
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After straightforward calculations, we can obtain the following
results:
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So we can rewrite the new modified radial part (new differential
equation) of the MKGE in the symmetries of (RNC: 3D-RS) as
follows:

(=B )-2(E, + )
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Moreover, to illustrate the above equation in a simple
mathematical way and attractive form, it is useful to enter the

following symbol Vhf":: (r), thus the radial Eqn. (20) becomes:
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Where, thkﬂ (r) is given by the following relation:
pert—e)
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By making the substitution Eqn. (19) into Eqn. (21), we find
yhmk (r) in the symmetries of (RNC: 3D-RSP) as follows:
B [ B Wk ¢® Wa &

pert—eff’
2 1-e”  r (1_6“”)Z]

The Eqn. (21) cannot be solved analytically for any state because
of the centrifugal term and the studied potential itself. Therefore,
in the present work, we considered the following approximation
type suggested by Greene and Aldrich and Dong et al. for them
[6, 53-55]:
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This gives the perturbative effective potential as follows:
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Where, X, = o (l(l + l)+ Z(En, + ,u)C).This allows  to
applying standard perturbation theory to determine the

nonrelativistic energy shift AE, . of diatomic molecules such as

N2, I, CO, NO and HCI at first order of the infinitesimal parameter
® due to non-commutativity of space-space properties. The
Hulthén—Kratzer potential model is extended by including new

terms proportional with the radial terms (1/7, 1/7 > and1/7* ) to
becomes MHKP model in (RNC-3D: RSP) and (NRNC-3D: RSP)

symmetries. The additive part thk” (r) of the new effective
pert—¢
potential V’?_"f; (r) is proportional to the infinitesimal vector
N
O=0,e, +@12€y +®,;e,. This allows us to consider
physically that the additive effective potential Vh'"k/f (r) as a
pert—ej

perturbation potential compared to the main potential (parent

potential operator V:mk (r)) in the symmetries of (RNC: 3D-RS)

and (NRNC-3D: RSP), that is, the inequality

 hmk (r)—<—< thk(r) has become achieved. That is, all the
pert—eff eff

physical justifications for applying the time-independent

perturbation theory become satisfied. This allows us to give a
complete prescription for determing the energy level of the

generalized I’lth excited states. Now, we apply the perturbative
theory, in the case of RNCQM, we find the expectation values

2 3/2 3/2 5/2
S S S S
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wave function which we have seen previously in the Eqn. (10).
After straightforward calculations we obtain the following results:

<n,l,m

> taking into account the

2
S

(I—s)

Tsu,,,u (- S)ZG,,,—4 [}:(21.”,,26,,,71)(1 _ 25)]2 dr

0

n,l,m>:Bf

3/2 +00
<n, l,m(lsi)3 n,l, m> =B Isu"’”/z(l —.9)2‘;"”3[Pf“”“w"”l)(l - ZS)}Zdr 27)
—5 :
2 oo ] ]
<n, l,m (1 )2 n,l, m> = Bf Is”"’”/z(l — )22 [Efu”"zc'””l)(l - 2.9)]2 dr
-5 0
e +0
<n, l,ml——\n,l, m> = Bf J.su"’”/z(l — )2 ’3[ ”(u"”m"’ ’1)(1 - 2.9)}Z dr
(1 —s)3 o

. . 1 ds
Where § = €Xp(—ar’), this allows us to obtaindr = ———.
a s
After introducing a new variablez=1-2s, we have
1 dz 1-z zZ+ o
dr=———, s= andl—s =——, the approximations
al-z 2

Eqn. (27) in that case have the following form:

<n,l,,,

2
N

4

Bz +1 . ) L
n,l,m> = W(n:;,rza.[(l_ 2P0 +Z)zo,,,4[ 1%24,,.2@,, 1)(2)12 dz
-1

=
—
|
©
Ny

3 +l
s 2
/2 +l
<ml,n (1s5 J ml,m> = 2%/*55,,1 7, _[(1—Z)M'/H/Z(l+Z)ZG"/72[H,y""’zq"il)(z)]zdz
s ’

Bz + - .
nl, m> = I (=22 (1425 [ P22 o f
-1

Ln

<“ (i~
We have applied the property of the spherical harmonics, which
has the formI Y (9, (D)YI.m' (9, (0) sin(@)d&dgo =0,0,, -
For relieving the burden of writing, we will provide useful
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2
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abbreviation <l’l,l R m|A For the ground

(n,l,m) :

30”200’_1)(2)= 1, thus the expectation
values in Eqn. (28) reduce to the following simple form:
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Comparing Eqn. (29) with the integral of the form [56]:
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A direct simplification to Eqn. (33) gives:
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Comparing Eqns. (35.1) and (35.2) with the integral (Eqn. (31)), we have the expectation values as:

sZ _ B! &2 (2a, +2)(2G, -3) _ 4ab (24 +3)1(26y, -3) . 42T (22, + 4T (26, - 3))
)4 a  (py-2)0(p, -2) (py -1)(py, -1) p,T(py) 36.1)
i a’D(24y +3/2)0(26, -2)  4asl (24 +5/2)0 (26, -2) N 42T (22 +7/2)0(26,, - 2))
(1 @ (py -3/2)0(py -3/2) (py -172)0 (D, -1/2) (py +1/2)0(Dy +1/2)
_ B T2 +3/2)0(2G, ~1) _ dabl(2 +5/2)0(2G,, -1) L 4’T (22, +7/2)0(26, - 1))
a  (py-1/2)0(py -1/2) (py +1/2)0(py; +1/2) (py +3/2)0(py; +3/2)
(1) (36.2)
Bi a*T(24y +5/2)0(26, -2) _ 4apl(24, +7/2)[ (26, - 2) N ap?T (24 +7/2)0(26Gy +1- 2))
@ (py -1/2)0(py -1/2) (py +1/2)0(py; +1/2) (py +1/2)0(py +1/2)

Where, D, = 24,, + 2G,,. Our current research is divided into ¢ operators ( [k J2 L2, Q2

ne—r?

and J_) forms a complete
two main parts, the first part corresponds to replace the coupling

> I set of conserved physics quantities CCPQ, the eigenvalues of the
of angular momentum operator with non-commutativity

properties L. ® by the new equivalent coupling ® LS (with operator J—L =5 are equal the values
1/2 g .. .

0= (@122 + @i + @123) ), we have chosen the vector®  j(j+1)—/(/+1) —s(s+1), with ‘l —S‘ <j S‘I +S‘ .

-

parallel to the spin S of diatomic molecules such as (N2, I, CO, Consequently, the energy — shift E(n =0, 7, I’S) and

N E (n =17,/ ,S)due to the perturbed spin-orbit coupling which
NO and HCl) and then we replace OLS by produced by the effect of perturbed effective potential

2 2 2 . .
9[} _Z _E j Furthermore, in the quantum mechanics :::'j” (r) for the ground state, the first excited state in (RNC:

3D-RS) symmetries as follows:

, 3 3/2 32 5/2
Eln=0,j,1,5)=k(0) < > > Koy + 2, + 1 Ba<s~‘> _ZV(’a2<S2> _2V°a2<s3>
(1 - S) (0.1m) 2 (1 - S) (0.1m) (1 - S) (00,m) (1 B S) (O.1m) (37

2 Ba' | &2 $2 §52
AE(n=1,7,1,5)=k(l) <S> X, +2(E, + y)[ <> -2’ <> -2, a2<> J
(1 - 5)4 (Ld,m) 1 l 2 (l - 3)3 (Ld,m) ’ (l - S)z (L0,m) ’ (1 - 5)3 (L,0,m)

Where, k([) = %{](/ +D) -1 +1)—s(s+ l}. Which can be generalized easily to the n" excited states in (RNC: 3D-RS)

symmetries as follows:

2 B’ | s s s
AE(n, j,1,5)= k(D) — X, +2E "My TPy >
(1.1.0,5)= k() <(1—S)4 ><n,1,m) o "1+'u{ 2 <(1_S)3 >(n,l,m) “ <(1_S)2>()1,1,M) Oa <(l_s)3><mhm)}
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g <HLI')). All of this data allow for the di th
The second is corresponding to replace both (L ® and ®,, ) by +( ’ )) oF TS data aflow foT The GIScoveLy The new

hift AE, (n,m to th ifi 1t
(0,,NL, and 0,,N, respectively), we have also need to apply enetgy s h’”k( ’ ) due to } ¢ modified  perturbed

Zeeman effect which generated by influence of the perturbed
<n,l,m‘Lz‘ n',l',m'> =mo,,0,0,

i (with— (l A ') < (m, m') effective potential

for the ground state, the first excited state in (RNC: 3D-RS) symmetries as follows:

AE(n =0,m) z~<< s > X, +2(E, + B“3< s > 2, 2< s > 2, 2< s >
n=0,m)= — wtH)— (= - a——= - a{——~—= om
(1 - ‘?)4 (0,0,m) N [ 2 (1 - S)3 (0,0,m) ’ (1 - S)Z (0,0,m) ’ (1 - S)} 0.,1,m) (39)

2 Ba3 S3/Z S3/2 SS/Z
AE(n=1,m)=N <S> Xy +2E, +u < > —2Vaz<> —2Vaz<> om
{ (1 - S)4 (11,m) " [ 2 (1 - S)3 (1.7,m) ’ (1 - S)z (1.4,m) ' (1 - S)3 (LLm)

Which can be generalized easily to the n™ excited states in (RNC: 3D-RS) symmetries as follows:

2 3/2

Ba} s s3/2 S5/2
AE(n,m)=N <s> X, +2E, +u <> -7, a2<> -2r, a2<> om  (40)
(1 - S)4 (n,l,m) ! / 2 (1 - S)3 (n,l,m) ’ (1 - S)2 (n,l,m) ’ (1 - S)3 (n,l,m)

4. Results and Discussions spin-orbital complying and modified Zeeman effect, which is

. . induced by  hmk (r) for the ground state, the first excited state
In this part, we report our results on based to the superposition o

principle, which permitted to deduce the additive energy shift  in (RNC: 3D-RS) symmetries as follows:
AE(n =0,j,l,s,m)and AE(n =1,j,l,s,m) due to the

S 2 Ba3 SS/Z SS/Z SS/Z
AE(n=0,/,1,5,m)= <‘> X, +2E, +u <> -2V, a2<> -27, a2< > {k(1)©+Nom}
{ (l - 5)4 0.1,m) ] ] 2 (1 - 5)3 (0,,m) ’ (l - S)z (0,0,m) ! (l - 5)3 (0,,m) (41)
2

AE(n=1,j,0s,m)=4(——)  X,+2(E,+ B | ST\ oyl ST g ST 1(1)® +N om}
S (l_s)4 (L,0,m) “ nrh 2 (l_sf (L1,m) ’ (l_s)z (L,m) ’ (I_Sy (L,m)

This can be generalized easily to the n™ excited states in (RNC: 3D-RS) symmetries as follows:

2 3 32 3/2 502
sl S) nale e B[ e ()l iorsan 4
(l - S) (n,1,m) 2 (l - S) (n,0,m) (l - S) (n,1,m) (1 - S) (nm)

The above results present the energy shift, which is generated by  energy. This allows us to conclude the energy

the effect of non-commutative properties of space-space; it Eﬁmf (Vo ,a,r.,D..n, j,l, s,m) . in the symmetries of (RNC:
depended explicitly with the non-commutative parameters rone

. . h .
(@,O'). It is should be noted that the obtained effective energy ~ 3D-RS), corresponding the generalized n" excited states, as a
AE, . (n, J,l ,s,m) under the modified Hulthén Kratzer functions of the shift energy AE, , (”aj oLys ,m) and £, due

to the effect of Hulthén—Kratzer potential model in RQM, as
follows:

potential model have a carry unit of energy because it resulted
from the perturbed effective energy ( 4 ‘- F 2[ ) combined with

the same energy value square and mass square, where we have
the principle of equivalence between mass and energy at higher

1/2
2 3 3/2 3/2 5/2 43
E"(Vy,00r,,D,,m, jul,s,m)= i+ E,, + <7S . > X, +2(E, + 1) 2% <7S - > ~W,a <7S . > ~W,a <7S - > (k1)@ +Nom} “43)
) (1 _S) (ndm) 2 (1 - S) (nd,m) (1 - S) (ndm) (1 - S) (ndm)

Where E, is the relativistic energy in RQM, which obtained  three values of j =[=%1,/, allows us the corresponding three

from Eqn. (11). Now, we want to apply Eq. (30) on the diatomic 1
molecules Ny, I, CO, NO and HCI with non-null spin, for the  values (kl (l ), k, (Z ), k, (l ))E 5(1 ,—2,—21 —2) and thus, we

special case S =1 , we have ‘l—l‘ <j S‘l—i—l

, thus we have .00 values of energy:

26
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1/2
E"™ (k,(1)Vy,a.r,,D 0, jl=1+1,s,1,m)=u+E, +{E(En,,n,l,Vo,a,r(,,De){é(D +N amH
E"™ (ky(I)Vy.a,r,,D 0, j,l=1,5,1,m)=u+E, +[E(E

EW‘ (ks(l),Vo,a,r‘,,De,n,j,l: l—l,s,l,m)z H+E, +{E(En,,n,l,V0,a,re,De){

The new factor E(E

nl>

2
N

S X+
(l—s)4 >(n,1,m) ] <

For the case of spin-0, j equal only one value j =1,

which allows us to obtain k& ( j .l ,S) = (. Thus the modified

energy can be determined according to the following new
generalized formula:

Ba'
T

:(Erl H

2AE

‘nl

nlVy,a,r,D,)= <

E" (V.
+[2(E

nl?

+E +

nl

D,,n,j=1,s =0,l,m)=u
De)NUn’l]l/z

r,

sles

(46)

nlV,,a,r

sles

On the other hand, it is evident to consider the quantum
number m takes (2/+1) values and we have also three

values for ] =] il,l , thus any state in ordinary 3-
dimensional space of energy for the diatomic molecules with
spin-1 under modified Hulthén—Kratzer potential model will
become triplet 3(2[ + l)sub-states. To obtain the total

complete degeneracy of energy level of the modified
Hulthén—Kratzer potential in the symmetries of (RNC: 3D-
RS), we will have to sum for all allowed values of angular

momentum quantum number /= 0,7—1. Total degeneracy
is thus,
n-1

3> 2(21+1)=6n> For:spin -1

1=0
n-1

2y (+1)=20" >4 ™ (47)
1=0 22(21+1)E 2n*  For :spin -0
ROM =0
NCRQM
a 2

nr—nl

2p

1
Where, & = E 1+ \/1 + 4(2;@61”62 +I(l+ 1)) . In the
non-relativistic Schrédinger equation Eq. (49) can apply to

hydrogen like atoms such as He", Be" and Li**, we
have‘l—l/q SjS‘l+l/2‘, allows us to obtain two values

N

(1]

e

{2/113&2 +I(+1) —M} +D, -
o

27

(44)

i

n,l,VO,a,re,De){—(’D +N O'm}]l/2

nl >

[+1
—%®+Nam

nlV,,a,r,,D, ) is determined from the following expression:

3/2 3/2 5/2

—2Va2<s> —2Va2<s > (45)
><n,1,m> T \(1-sf (ndm) T )

It is clear that the degeneracy of the initial spectral is
automatically broken and replaced by a more precise entity.
The triplet of the total complete degeneracy of energy level
for the diatomic molecules with spin-1, in RNCQM
symmetries under the modified Hulthén—Kratzer potential
model, gives very clear physical indicator shows that physical
treatments with RNCQM appear more detailed and clarity if
compared with similar energy levels obtained in ordinary
relativistic quantum mechanics. In order to consider further
the interpretation of the positive and negative energy
solutions of the MKGE, one can consider the nonrelativistic
limit. For this purpose, we apply the following
transformations:

Ehm](V()’%’/é’De’n’j’l’S’m)_ﬂ_) mk(l/()"ql/é’l)e’njalasarn)
rone nene (

48)
E™V.0r, D, b5, m)+ 11—

Here Ehi"k‘(VO,a De,n,j,l,s,m) is the

relativistic energy in (NRNC: 3D-RS) symmetries, inserting
above transformation into Eqn. (43) yields:

T,

7, non-

Ehmk (I/O, a

nr—nc

+[2(E

nl>

Deanajalasam): Enr—nl —2/Ll+
(49

I,

LRPT)

)
n,1,Vy,c,r,, D, (IO + N om)]"?

Where, E

symmetries of nonrelativistic quantum mechanics and is
given in Ref. [8] as follows:

w_m 1 the non-relativistic energy in the

2uD 7 +1(1+1) -

2
(24

2u

4uD,r, +2ud |’
n+é& o (50)

2

2(n+¢&)

(j=1£1/2) which gives (k,(I),k, (Z))E%(Z,—l—l)

and thus, we obtain two values of the energy shift
AE"™ (n,j,l,s,m) as follows:

hmk
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- l
AE" (n, j =1+1/2,1,5,m)=E\E,.,n,l.V,a,1,,D, | ~O+B
/,,M(” J s.m)=Z2(E,.n1V,,ar, ”>{2 om} 1)

I1+1

AE" (n,j=1-1/2,1,5,m)=Z(E n,l,VO,a,;;,De){—7®+Bom}

‘nl>

Elmk (Vo’a’re,De,n,j,l,S,M)=E

nr-ne nr—nl

Thus, one can conclude that the MKGE becomes similar
to the Duffin—Kemmer equation, which describes bosonic
particles with spin non-null. It should be noted that our
current results are an excellent agreement with our previously
published work and other works in the context of NCQM
[10,12,13, 22, 23, 55,57,58]. It is worthwhile to mention that
for the two simultaneously limits (@,O‘) - (0,0), we

recover the results of the commutative space obtained in Ref.
[6] For the MHKP model. This means that our present
calculations are correct.

5. Conclusions

This section of our paper gives a summary of the basic points
in our work. We have investigated the MKGE and MSE for
the MHKP model in the relativistic and nonrelativistic non-
commutative  three-dimensional spaces. The energy

hmk . .
E,,m,,( (Vo,a,re,De,n,],l,m) due the non-commutative

. . h .
property corresponding the generalized n" excited states as
a function of the shift energy AEhmk (n,j,l,s,m) and En[

due to The MHKP model is obtained via first-order
perturbation theory and expressed by the Gamma function,

the discreet atomic quantum numbers (j,l,s,m) and the
potential parameters (V,,a,7,,D,), in addition to non-

commutative two parameters (® and o).

This behavior is similar to the perturbed modified Zeeman
Effect, and modified perturbed spin-orbit coupling in which

References

[1] H. Hulthén, Uber die Eigenlosungen der Schrodinger
chung des Deutrons, Ark. Mat. Astron. Fys. A28, 5
(1942)

[2] M. C. Onyeaju, J. O. A. Idiodi, A. N. Ikot, M. Solaimani
and H. Hassanabadi, Linear and Nonlinear Optical
Properties in Spherical Quantum Dots: Generalized
Hulthén Potential, Few-Body Syst. 59, 793-805 (2016).
https://doi.org/10.1007/s00601-016-1110-4

[3] M. Hosseinpour, F. M. Andrade E. O. Silva and H.
Hassanabadi, Scattering and bound states for the Hulthén

28

[AB” (0, j=1-1/2,L5,m)]* for j=1-1/2

The above results of the degenerate energy shift and Eqn.
(38) gives the nonrelativistic energy

E"mk (Vo,a r De,n,j,l,s,m) of a fermionic particle

sles
nr—nc e

with - §' =1/ 2 under the modified Hulthén—Kratzer potential
model:

AEY (nj=1+1/2Ls,m)] " for =141/

(52)

an external magnetic field is applied to the system, and the
spin-orbit couplings which are generated with the effect of

the perturbed effective potential V’"jzk (r) in the symmetries
per

of relativistic and nonrelativistic non-commutative 3-
dimensional real space.

Therefore, we can conclude that the MKGE becomes
similar to the Duffin—Kemmer equation under MHKP model,
it can describe a dynamic state of a particle with spin one in
the symmetries of RNCQM. We have seen that the physical
treatment of MKGE under the MHKP model for the diatomic
molecules with spin-1 gives a very clear physical indication
that physical treatments with RNCQM appear more detailed
and clarity if it compared with similar energy levels obtained
in ordinary relativistic quantum  mechanics. The
nonrelativistic limits were treated and the results related to
RQM under the Hulthén—Kratzer potential model becomes a
particular case when we take simultaneously two limits

(@, O') — (0,0). The comparisons show that our theoretical
results are in very good agreement with reported works.

Acknowledgments

This work has been partly supported by the AMHESR under
project number BOOL0O2UN280120180001 and by the
Laboratory of Physics and Material Chemistry, University of
M’sila, Algeria. We thank the reviewers for their helpful
criticism and suggestions for valuable improvements to our

paper.

potential in a cosmic string background, Fur. Phys. J.
C77,270 (2017). https://doi.org/10.1140/epjc/s10052-
017-4834-5

[4] O. Bayrak and I. Boztosun, Bound state solutions of the

Hulthén potential by using the asymptotic iteration
method, Physica Scripta 76(1), 92-96
(2007). doi:10.1088/0031-8949/76/1/016

[5] Y. P.Varshni, Eigenenergies and oscillator strengths for

the Hulthén potential, Phys. Rev. 4 41, 4682 (1990).
DOI: https://doi.org/10.1103/PhysRevA.41.4682

[6] J. A. Obu, P. O. Okoi and U. S. Okorie, Relativistic and

nonrelativistic treatment of Hulthén—Kratzer potential
model in D-dimensions, Indian J.Phys
(2019). doi:10.1007/512648-019-01638-w



The African Review of Physics (2020) 15: 0003

[71 O. Bayrak, I. Boztosun and H. Cifti, Exact analytical
solutions to the Kratzer potential by the asymptotic
iteration method, Int. J. Quant. Chem. 107, 540 (2007).
https://doi.org/10.1002/qua.21141

[8] C.O. Edet, U. S. Okorie, A.T. Ngiangia, and A. N. Ikot,

Bound state solutions of the Schrodinger equation for the

modified Kratzer potential plus screened Coulomb

potential, Indian J.Phys. (2019).

https://doi.org/10.1007/s12648-019-01477-9

C. O. Edet, K. O. Okorie, H. Louis and N. A. Nzeata-Ibe,

Any [-state solutions of the Schrodinger equation

interacting with Hellmann—Kratzer potential model,

Indian J. Phys. (2019). https://doi.org/10.1007/s12648-

019-01467-x

[10] Abdelmadjid Maireche, Any L-States Solutions of The
Modified Schrodinger Equation with Generalized
Hellmann—Kratzer Potential Model in The Symmetries of
NRNCQM, To Physics Journal4, 16-32 (2019).
Retrieved from
https://purkh.com/index.php/tophy/article/view/521

[11] H. Louis, Benedict I. Ita and N. I. Nelson, K-State
Solutions To The Dirac Equation For The Quadratic
Exponential-Type Potential Plus Eckart Potential And
Coulomb-Like Tensor Interaction Using Nikiforov-
Uvarov Method, To Physics Journal 3, 12-23 (2019).
Retrieved from
https://purkh.com/index.php/tophy/article/view/379

[12] Abdelmadjid Maireche, The Klein—Gordon Equation
with Modified Coulomb Potential Plus Inverse-Square—
Root Potential in Three-Dimensional Noncommutative
Space, To Physics Journal 3, 186-196 (2019). Retrieved
from https://purkh.com/index.php/tophy/article/view/489

(9]

[13] Abdelmadjid Maireche, The Klein—Gordon equation with
modified Coulomb plus inverse-square potential in the
noncommutative  three-dimensional space, Modern
Physics  Letters A 35(5) (2020)  2050015.
doi:10.1142/50217732320500157

[14] Abdelmadjid Maireche, A New Model for Describing
Heavy-Light Mesons in The Extended Nonrelativistic
Quark Model Under a New Modified Potential
Containing Cornell, Gaussian And Inverse Square Terms
in The Symmetries Of NCQM, To Physics Journal 3,
197-215 (2019). Retrieved from
https://purkh.com/index.php/tophy/article/view/500.

[15] H. S. Snyder, Quantized Space-Time, Phys Rev. 71
(1947) 38-42 DOI:https://doi.org/10.1103/PhysRev.71.38

[16] S. Capozziello, G. Lambiase and G. Scarpetta,
Generalized uncertainty principle from quantum
geometry, [Int. J. Theor. Phys. 39 (2000) 15.
https://doi.org/10.1023/A:1003634814685

[17] R. Vilela Mendes, Geometry, stochastic calculus, and
quantum fields in a noncommutative space-time, Journal

of Mathematical — Physics 41(1) (2000) 156—
186. doi:10.1063/1.533127
[18] E. Passos, L. R. Ribeiro and C. Furtado ,

Noncommutative Anandan quantum phase, Phys Rev A
76, 012113, (2007). DOLIL:
https://doi.org/10.1103/PhysRevA.76.012113

[19] L. R. Ribeiro, E. Passos, C. Furtado and J. R.
Nascimento, Geometric phases modified by a Lorentz-
symmetry violation background, International Journal of
Modern Physics A 30(14), 1550072 (2015). Doi:
10.1142/s0217751x15500724

[20] O. F. Dayi, Dynamics of dipoles and quantum phases in
noncommutative coordinates, EPL (Euro physics Letters)
85(4), 41002 (2009). doi:10.1209/0295-5075/85/41002

[21] O. F. Day, and B. Yapiskan, An alternative formulation
of Hall effect and quantum phases in noncommutative
space, Physics Letters A 374(37), 3810-3817 (2010).
doi:10.1016/j.physleta.2010.07.043

[22] H. Motavalli and A. R. Akbaich, KLEIN-GORDON
EQUATION FOR THE COULOMB POTENTIAL IN
NONCOMMUTATIVE SPACE, Modern Physics Letters
A, 25(29), 2523-2528 (2010).
doi:10.1142/s0217732310033529

[23] M. Darroodi, H. Mehraban, and H. Hassanabadi, The
Klein—Gordon equation with the Kratzer potential in the
noncommutative space, Modern Physics Letters A 33 No.
35, 1850203 (2018). doi:10.1142/s0217732318502036

[24] Abdelmadjid Maireche, Solutions of Two-dimensional
Schrodinger Equation in Symmetries of Extended
Quantum Mechanics for the Modified Pseudoharmonic
Potential: an Application to Some Diatomic Molecules, J.
Nano- Electron. Phys. 11 No 4, 04013 (2019). DOI:
https://doi.org/10.21272/jnep.11(4).04013

[25] P. Gnatenko, Parameters of noncommutativity in Lie-
algebraic noncommutative space, Physical Review D
99(2), 026009-1 (2019).
doi:10.1103/physrevd.99.026009

[26] P. Gnatenko, and V. M. Tkachuk, Weak equivalence
principle in noncommutative phase space and the
parameters of noncommutativity, Physics Letters A
381(31), 2463-2469 (2017).
doi:10.1016/j.physleta.2017.05.056

[27] O. Bertolami, J. G. Rosa, C. M. L. De aragao, P.
Castorina and D. Zappala, Scaling of varialbles and the
relation between noncommutative parameters in
noncommutative quantum mechanics, Modern Physics
Letters A 21(10),  795-802  (2006).  Doi:
10.1142/50217732306019840

[28] Abdelmadjid Maireche, A Recent Study of Excited
Energy Levels of Diatomics for Modified more General
Exponential Screened Coulomb Potential: Extended
Quantum Mechanics, J. Nano- Electron. Phys. 9(3),
03021 (2017). DOI: 10.21272/jnep.9 (3).03021

[29] E. F. Djemai, and H. Smail, On Quantum Mechanics on
Noncommutative Quantum Phase Space, Commun.
Theor. Phys. (Beijing, China) 41(6), 837-844 (2004).

29



The African Review of Physics (2020) 15: 0003

doi:10.1088/0253-6102/41/6/837

[30] Yi YUAN, LI Kang, WANG Jian-Hua and CHEN Chi-
Yi, Spin-1/2 relativistic particle in a magnetic field in NC
phase space, Chinese Physics C 34(5) 543-547
(2010). doi:10.1088/1674-1137/34/5/005

[31] O. Bertolami, and P. Leal, Aspects of phase-space
noncommutative quantum mechanics, Physics Letters B
750, 6—11 (2015). doi:10.1016/j.physletb.2015.08.024

[32] C. Bastos, O. Bertolami , N. C. Dias and N.
JPrata, Weyl-Wigner formulation of noncommutative
quantum mechanics, Journal of Mathematical Physics
49(7), 072101 (2008). doi:10.1063/1.2944996

[33] J. Zhang, Fractional angular momentum in non-
commutative spaces, Physics Letters B 584(1-2), (2004)
204-209. doi:10.1016/j.physletb.2004.01.049

[34] J. Gamboa, M. Loewe, and J. C. Rojas, Noncommutative
quantum mechanics, Phys. Rev. D 64, 067901 (2001).
DOI: https://doi.org/10.1103/PhysRevD.64.067901

[35] M. Chaichian, Sheikh-Jabbari and A.Tureanu , Hydrogen
Atom Spectrum and the Lamb Shift in Noncommutative
QED, Physical Review Letters 86(13), 2716-2719 (2001).
doi:10.1103/physrevlett.86.2716

[36] Abdelmadjid Maireche, New Relativistic Atomic Mass
Spectra of Quark (u, d and s) for Extended Modified
Cornell Potential in Nano and Plank’s Scales, J. Nano-
Electron. Phys. 8(1), 01020-1 - 01020-7 (2016). DOI:
10.21272/jnep.8 (1).01020

[37] J. Wang, and K. Li, The HMW effect in noncommutative
quantum mechanics, Journal of Physics A: Mathematical
and Theoretical 40(9), 2197-2202 (2007).
doi:10.1088/1751-8113/40/9/021

[38] Abdelmadjid Maireche, New Bound State Energies for
Spherical Quantum Dots in Presence of a Confining
Potential Model at Nano and Plank’s Scales, NanoWorld
J. 1(4), 122-129 (2016). Doi: 10.17756/nwj.2016-016

[39] K. Li, and J. Wang, The topological AC effect on non-
commutative phase space, The European Physical
Journal C. 50(4) (2007) 1007-1011.
doi:10.1140/epjc/s10052-007-0256-0

[40] Abdelmadjid Maireche, A Complete Analytical Solution
of the Mie-Type Potentials in Non-commutative 3-
Dimensional Spaces and Phases Symmetries, Afi. Rev
Phys. 11, 111-117 (2016).

[41] Abdelmadjid Maireche, A New Nonrelativistic
Investigation for the Lowest Excitations States of
Interactions in One-Electron Atoms, Muonic, Hadronic
and Rydberg Atoms with Modified Inverse Power
Potential, International Frontier Science Letters 9, 33-46
(2016). DOI:
https://doi.org/10.18052/www.scipress.com/IFSL.9.33

[42] Abdelmadjid Maireche, New quantum atomic spectrum
of Schrdodinger equation with pseudo harmonic potential
in both noncommutative three-dimensional spaces and
phases, Lat. Am. J. Phys. Educ. 9(1) (2015)1301.

[43] Abdelmadjid Maireche, New Bound States for Modified
Vibrational-Rotational Structure of Supersingular plus
Coulomb Potential of the Schrodinger Equation in One-
Electron Atoms, International Letters of Chemistry,
Physics and Astronomy 73, 31-45 (2017). DOL:

https://doi.org/10.18052/www.scipress.com/ILCPA.73.31

[44] Abdelmadjid Maireche, Extended of the Schrédinger
Equation with New Coulomb Potentials plus Linear and
Harmonic Radial Terms in the Symmetries of
Noncommutative Quantum Mechanics, J. Nano-
Electron. Phys. 10(6), 06015-1 - 06015-7 (2018). DOI:
https://doi.org/10.21272/jnep.10(6).06015

[45] Abdelmadjid Maireche, Investigations on the Relativistic
Interactions in One-Electron Atoms with Modified
Yukawa Potential for Spin 1/2 Particles, International
Frontier  Science Letters 11, (2017) 29. DOL:
https://doi.org/10.18052/www.scipress.com/IFSL.11.29

[46] Abdelmadjid Maireche, New Nonrelativistic Three-
Dimensional Spectroscopic Studies of NMGECSC
Potential in Presence of External Electric, J. Nano-
Electron.  Phys. 10 No 4, 04003 (2018).
http://dx.doi.org/10.21272/jnep.10(4).04003

[47] Abdelmadjid Maireche, Effects of Three-Dimensional
Noncommutative Theories on Bound States Schrodinger
Molecular under New Modified Kratzer-type Interactions,
J. Nano- Electron. Phys. 10 No 2, 02011 (2018).
https://doi.org/10.21272/jnep.10(2).02011

[48] M. A. De Andrade and C. Neves, Noncommutative
mapping from the symplectic formalism, Journal of
Mathematical Physics 59(1), 012105
(2018). doi:10.1063/1.4986964

[49] E. M. C. Abreu, C. Neves and W. Oliveira,
Noncommutativity from the symplectic point of view, Int.
J. Mod. Phys. A 21, 5359 (2006).
doi:10.1142/50217751x06034094

[50] E. M. C. Abreu, J. A. Neto, A. C. R. Mendes, C. Neves,
W. Oliveira and M. V. Marcial, Lagrangian formulation
for noncommutative nonlinear systems, /nt. J. Mod. Phys.
A.27, 1250053 (2012). doi:10.1142/s0217751x12500534

[51] L. Mezincescu, Star operation in quantum mechanics, e-
print arXiv: hep-th/0007046v2.

[52] R. Khordad, and H. R Rastegar Sedehi, Magnetic
susceptibility of graphene in non-commutative phase-
space: Extensive and non-extensive entropy, The
European Physical Journal Plus 134(4)
(2019). doi:10.1140/epjp/i2019-12558-5

[53] R. L. Greene and C. Aldrich, Variational wave functions
for a screened Coulomb potential, Physical Review A
14(6), 2363-2366 (1976). doi:10.1103/physreva.14.2363

[54]1 S. H. Dong, W. C. Qiang, G. H.Sun and V. B.
Bezerra,Analytical approximations to the I-wave solutions
of the Schrédinger equation with the Eckart potential,
Journal of Physics A: Mathematical and Theoretical
40(34), 10535-10540  (2007).  doi:10.1088/1751-
8113/40/34/010

[55] M. Alberg and L. Wilets, Exact solutions to the
Schrédinger equation for potentials with Coulomb and
harmonic oscillator terms, Physics Letters A 286(1), 7-14
(2001). Doi: 10.1016/s0375-9601(01)00385-1

[56] S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series and Products, 7th. Ed.; Elsevier, edited by Alan
Jeffrey (University of Newcastle upon Tyne, England)

30



The African Review of Physics (2020) 15: 0003

and Daniel Zwillinger (Rensselaer Polytechnic Institute
USA) 2007

[57] Abdelmadjid Maireche, A New Asymptotic Study to the
3-Dimensional Radial Schrodinger Equation under
Modified Quark-antiquark Interaction Potential, J
Nanosci Curr Res 4(1), 131 (2019).

[58] Abdelmadjid Maireche, Nonrelativistic treatment of

Received: 02 December, 2019
Accepted (revised version): 27 May, 2020

31

Hydrogen-like and neutral atoms subjected to the
generalized perturbed Yukawa potential with centrifugal
barrier in the symmetries of noncommutative Quantum
mechanics, International Journal of Geometric Methods
in Modern Physics.
https://doi.org/10.1142/S021988782050067X



