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We study the LRS Bianchi type-II string cosmological model in (𝑅, 𝑇) theory of gravity. Here, R is the Ricci scalar and T is 
the trace of the energy momentum tensor. In this study, we consider a time varying deceleration parameter (DP), which 
generates an accelerating universe, to obtain the exact solution of the field equations. Geometric string model, massive string 
model and Takabyasi or p-string model are presented in this theory. Some physical and kinematical properties of the models 
are studied.  
 

1. Introduction 

In the last century, modern cosmology reached a 
new vision to establish considerable advancements 
to take into account the current accelerated 
expanding universe. The two crucial observational 
groups including supernovae cosmology project 
and the high-redshift supernovae search team have 
provided the main evidence for the cosmic 
acceleration of the Universe [1, 2]. The other 
cosmic observations like cosmic microwave 
background (CMB) fluctuations [3, 4], large-scale 
structure (LSS) [5, 6], cosmic microwave radiation 
(CMBR) [7, 8] indicate that the present universe is 
undergoing an accelerated expansion.  
    It is also believed that the Universe changed with 
time from early deceleration phase to late-time 
acceleration phase [9]. Sarkar [10] and Shariffet al. 
[11] have discussed this standard cosmological 
concept about the acceleration expansion of the 
Universe.  The most promising approach confirmed 
by the cosmological research community for 
discussing the cosmic expansion of the Universe is 
the introduction of the most exotic and mysterious 
entity dubbed as dark energy, which has positive 
energy density and negative pressure. Recently, 
from cosmological and Wilkson microwave 
anisotropic probe (WAMP) results [12]  it was 
concluded that the Universe embodied with 68.5% 
dark energy, 26.5% of dark matter and 5% of 
baryonic matter. 
    It is believed that the early universe evolved 
through some phase transitions, thereby yielding a 
vacuum energy density, which at present, is at least 
118 orders of magnitudes smaller than in the 
Planck time [13]. Such a discrepancy between 
theoretical expectations and empirical observations 
constitutes a fundamental problem in the interface 
uniting astrophysics, particle physics, and 
cosmology. The recent observational evidence for 
an accelerated state of the present universe, 
obtained from distant SNeIa (Perlmutter et al. [14]; 
Riess et al. [15]), gave strong support to search for 
alternative cosmologies. Thus, the state of affairs 

has stimulated the interest in more general models 
containing an extra component describing dark 
energy and simultaneously accounting for the 
present accelerated stage of the Universe. The 
isotropic models are considered to be the most 
suitable to study the large scale structure of 
Universe. However, it is believed that the early 
universe may not have been exactly uniform. This 
prediction motivates us to describe the early stages 
of the Universe with the models having anisotropic 
background.  
 
    In addition, it has been postulated that the 
standard Einstein–Hilbert action is modified by an 
arbitrary function f(R), where R is Ricci scalar 
curvature. The f(R) gravity becomes an adequate 
theory to provide the gravitational alternative for 
dark energy and about the early inflation plus late-
time cosmic acceleration of the Universe [16-21]. 
In 2007, the f(R) gravity theory was restructured by 
merging the matter Lagrangian density Lm with 
initial arbitrary function of the Ricci scalar R [22]. 
The unification of dark energy and early time 
inflation with late-time acceleration from f(R) 
theory to all Lorentz non-invariant theories is 
discussed by Nojiriand Odintsov [23]. Through 
continuation of this work of coupling, in 2011, 
Harkoet al. [24] proposed a new modified theory 
named as f(R,T) theory, where the gravitational part 
of the action still depend on the Ricci scalar R like 
f(R) theories and also a function of trace T . It is 
suggested that due to the matter-energy coupling, 
the leading model of this theory depends on source 
term representing the variation of energy–
momentum tensor. Indefinitely many modified 
gravitational theories such as f (G) gravity, f (R, G) 
gravity, and f(T) gravity, etc. were developed to 
achieve the accelerated expansion of the Universe.  
    Myrzakulov et al. [25] have investigated the 
inflation in f(R, φ) theories of gravity where the 
scalar field is coupled with gravity. Sebastiani and 
Myrzakulov [26] have briefly reviewed various f(R) 
gravity models for inflation, in particular, 
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Starobinsky-like inflation. After that f(R, T ) 
gravity becomes the most prominent theory for 
investigating the fate of the late-time accelerating 
expansion of the universe. A phase transition also 
occurred from matter dominated era to an 
accelerated phase during the reconstruction of f(R, 
T) gravity theory [27]. In the context of common 
perfect fluid matter, an axially symmetric 
cosmological model was constructed in the 
framework of f(R, T) gravity [28]. In f(R, T) gravity 
theory, many cosmological models can be 
constructed by changing choices of the matter 
source. Recently, Moraeset al. [29] derived the 
Starobinksy model in f(R, T) gravity. 
    The presence of strings results in anisotropy in 
the space-time, though strings are not observable in 
the present epoch. Unlike domain walls and 
monopoles, strings cause no harm (to the 
cosmological models) but rather can lead to very 
interesting astrophysical consequences. The string 
gas cosmology will lead to a dynamical evolution 
of the early universe, very different from what is 
obtained in standard and inflationary cosmology 
and can already be seen by combining the basic 
ingredients from string theory discussed so far.  
    As the radius of a cloud of strings decreases 
from an initially large value which maintains 
thermal equilibrium, the temperature first rises as in 
standard cosmology since the occupied string states 
(the momentum modes) get heavier. However, as 
the temperature approaches the Hagedorn 
temperature, the energy begins to flow into the 
oscillatory modes and the increase in temperature 
levels off. As the radius decreases below the string 
scale, the temperature begins to decrease as the 
energy begins to flow into the winding modes 
whose energy decreases as the radius decreases 
    Observations have been conducted to obtain the 
homogeneity and isotropic properties of the 
Universe. It is believed that at the end of the 
inflationary era, the geometry of the Universe was 
homogeneous and isotropic [30], where the FLRW 
models played an important role in representing 
both spatially homogeneous and isotropic universe. 
But the theoretical argument and the anomalies 
found in CMB provide the evidence for the 
existence of an anisotropic phase, which is later 
called isotropic one. After the announcement of 
Planck probe results [31], it is believed that the 
early universe may not have been exactly uniform. 
    Thus, the existence of inhomogeneous and 
anisotropic properties of the Universe has gained 
popularity when it comes to constructing 
cosmological models under the supervision of 
anisotropic background. Therefore, Bianchi type 
models are very relevant for describing the early 
universe with the anisotropic background. Due to 
some analytical difficulties in studying the 
inhomogeneous models, many researchers 
considered the Bianchi type models for 

investigating the cosmic evolution of the early 
universe as they are homogeneous and anisotropic. 
There exist nine types (I–IX) of Bianchi space-
times in literature. Here, we consider Bianchi type-
II space-time, as it is the simplest spatially 
homogeneous and anisotropic. It is also known as 
the immediate generalization of the FLRW flat 
metric with different scale factors in each spatial 
direction. In some special cases, the Bianchi type-I 
models include Kasner metric which helps to 
govern the dynamics near the singularity. The 
Bianchi type-II cosmological models are more 
compatible with the simplest mathematical form 
which attracts various researcher to study different 
aspects. Bianchi type II space time successfully 
explains the initial stage of evolution of the 
Universe.  
     Asseo and Sol [32] have given the importance 
of Bianchi type II space-time for the study of the 
Universe. The string theory is useful to describe an 
event at the early stage of evolution of the Universe 
in a lucid way. Cosmic strings play a significant 
role in the structure formation and evolution of the 
Universe. The presence of string in the early 
universe has been explained by Kibble [33], 
Vilenkin [34], and Zel’dovich [35] using grand 
unified theories. These strings have stress energy 
and are classified as massive and geometric strings. 
The pioneer work in the formation of energy 
momentum tensor for classical massive strings is 
due to Letelier [36] who explained that the massive 
strings are formed by geometric strings (Stachel 
[37]) with particle attached along its extension. 
Many authors’ namely, Banerjee et al. [38], 
Tikekar and Patel [39, 40], Wang [41], and 
Venkateswarlu et al. [42–46], have investigated 
string cosmological models in different contexts. 
    In this paper, we study the LRS Bianchi Type-II 
string models in f(R, T) theory of gravity with the 
help of variable deceleration parameter. 
 

2. Gravitational field equations of f (R, T) 
modified gravity theory 

In this theory, the modified gravity action if given 
by  

xdLTRf
G

gS m
4),(

16

1






   

    (1) 

Where, ),( TRf is an arbitrary function of the 

Ricci scalar R and the trace T of the tress energy 

tensor ijT of the matter, mL  is the matter 

Lagrangian density. If ),( TRf is replaced 

by )(Rf , we get the action for )(Rf  gravity and 

replacement of ),( TRf by R leads to the action of 

general relativity. The stress energy tensor of the 
matter is defined as  
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and its trace by  ij
ij

ij TgT  .Assuming that the 

Lagrangian density mL of matter depends only on 

the metric tensor ijg  and not on its derivative leads 

to  
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mijij

g
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    (3) 

Varying the action S with respect to metric 

tensor ijg , the field equation of ),( TRf gravity 

are obtained   as 
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□

ii
i  , is the covariant derivative and ijT is 

the  standard matter energy  momentum tensor 

derived from the Lagrangian mL .The contraction 

of (4) yields 
 

fR(R,T)Rij+3□fR(R,T)gij-2f(R,T)=
 

IJTTij TRfTTRfT  ),(),(8(    (6) 

Where, ij
ij

ij g  .From (4) and (6) we obtain  
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 

 (7) 

If the matter is regarded as a perfect fluid the stress 
energy tensor of the matter Lagrangian is given by  

ijjiij PguuPT  )(     (8) 

Where, )0,0,0,1(iu  is the four velocity in co-

moving coordinates which satisfies the conditions 

1i
i uu and 0 ij

i uu . Here P and  are the 

pressure and energy density of the fluid, 
respectively. With the use of Eqn. (5) we obtain  

ijijij PgT  2    (9) 

It is important to note that the field equations in 
),( TRf , gravity also depend on the physical 

nature of matter field  through the tensor ij . 

Hence in this theory depending on the nature of the 
matter source we can obtain several theoretical 
models for each choice of ),( TRf , Harko et al. 

[24] considered three explicit forms of  f  as  


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Generally, the field equations also depend through 
the tensor θij, on the physical nature of the matter 
field. Hence in the case of f (R, T) gravity, 
depending on the nature of the matter source, we 
obtain several theoretical models corresponding to 
each choice of f (R, T). 
    Assuming f (R, T) = R + 2f (T) as a first choice 
where, f (T) is an arbitrary function of the trace of 
stress energy tensor of matter, we get the 
gravitational field equations of f (R, T) gravity from 
Eqn. (9) as 

1

2ij ijR R g 
    (11) 

 8 2 ( ) ( )ij ij ij ijT f T T f T g   
 Where, the prime denotes differentiation with 

respect to the argument. The field equations of f(R, 
T)  gravity, in view of Eqn. (9), become 

1

2ij ijR R g 
    (12) 

8 2 ( ) [2 ( ) ( )]ij ij ijT f T T p f T f T g   
 

Spatially homogeneous and anisotropic LRS 
Bianchi type-II space-time is given by the 
following form 

 22 2 2 2 2 2( )ds dt B dx zdy A dy dz        (13) 

Where, A and B are functions of cosmic time t only. 

We consider the energy momentum tensor for a 
cosmic string source in the field equations (12) as 

jijiij xxuuT  
     (14) 
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Where ρ is the energy density of the string cloud, ui 

is the four velocity, xi is the string direction and λ is 
the string tension density. Also, we have 

0,1  xuxxuu i
j

iji   (15) 

and 

  p     (16) 

Where, ρp is the rest energy density particle 
attached to the string. Letelier [36] has pointed out 
that λ may be positive or negative. Also we choose 
(Harko et al. [24]) 

TTf )(     (17) 

Where, μ is a constant. 
    Now using commoving coordinate system, the 
field equations (11) (replacing p by λ in the view of 
(14), for the metric with the help of (14) to (17), 
can be explicitly written as 
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Which reduced to the following two independent 
equations 
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(22) 

Where, an overhead dot indicates differentiation 
with respect to t. 
 

3. Solutions of the field equations and the 
corresponding models 

 
We can observe that the field equations (21) and 
(22) are two independent equations with four 
unknowns A, B, ρ and λ. Hence to obtain the 
deterministic solution the following two condition 
are assumed: 
 (i) The equations of state 
       (23) 

  )1(     (24) 

 0  .   (25) 

(ii) a special form of deceleration parameter(DP) 
[47, 48] 




a

q



1

1    (26) 

The behavior of the Universe is determined by the 
sign of q. If q>0, we have decelerating universe 

and if q<0, we have accelerating universe. If q= 0, 

we have uniform expansion of the Universe. 
Here )0(  is a constant and a is the scale factor 

of the metric. 
    We discuss the solution of the field equations by 
considering the conditions given by Eqns. (23)-

(25).The Hubble parameter His defined as 
a

a
H


  

and the volume is defined as: BAaV 23  . 
Using Eqn. (26) in this relation, the values of the 
metric potentials A ,B are obtained as 

    2

1

1 teA   (27) 

  
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1 teB    (28) 

Consequently, metric (13) takes the form 

   
4

22 2 1tds dt e dx zdy                 

 
1

2 21 ( )te dy dz                 (29) 
Which, represents the LRS Bianchi Type-II string 
model in f(R, T) gravity theory.   
From (26) we obtained  

   )1(1
 aA

a

a
H


   (30) 

Where, A1 is a constant of integration and set 
A1=1.Integrationg (30) and using the initial 
conditions a=0 at t=0we have found  

 1 tea 
    (31) 
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where z is the redshift.  

Now from (31), we obtain the following relation  



 





 




1)
1

1
(log
z

t    (32) 

and the corresponding q(z) is obtained as  

  1

1
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1
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
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
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

z
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The deceleration parameter describes the evolution 
of the Universe. The cosmological models of the 
evolving universe transits from early decelerating 
phase (q >0) to current accelerating phase (q < 
0).Whereas, the models can be classified on the 
basis of the time dependence of DP. Recent 
observations like SNeIa [49] and CMB anisotropy 
[50] confirmed that the present universe is 
undergoing an accelerated phase of expansion and 
the value lies in between 01  q . The 

deceleration parameter will be negative (i.e., q < 0) 
for β< 1.325and becomes positive (i.e., q > 0) for β 
> 2.0. Fig-1 depicts the behavior of deceleration 
parameter with respect to redshift, in which the 
value of q lies in specified range of accelerating 
phase. The values of transition redshift ztr for our 
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model are agreeing with the observational data [51-
53]. The transition from deceleration to 
acceleration phase in f(R, T) gravity with 
polynomial function of T is discussed by Moraes et 
al. [54]. The model is completely under accelerated 
phase which is conformity with observational data. 
 

 
 
Fig.1. Plot of q verses redshift with different β 
 

3.1. Geometric or Nambu string (ρ = λ) 
 
In this case we assume 0  .This 

corresponds to the state equation for a cloud of 
mass less geometric (Nambu) strings, 

i.e. 0p .Therefore, in this case, from equations 

(21) and (22),we obtain the energy density and 
tension density as 
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Fig 2.  Plot of rest energy density and string density (ρ=λ) 
versus time t 
 
 From equation (34), it is found that tension density 
 equals to rest energy density )( .  Fig. 2 shows 

the behaviur of geometric strings in f(R,T) gravity 
for different values of β . It is noted that the rest 
energy density (tension density) is an increasing 
function of time and it approaches a small positive 
value at present epoch. This behavior is clearly 
depicted in Fig. 2. 

 
3.2. Massive string (ρ+λ=0) 
 
The relation between the constant   and time is 

given by  
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The energy density and tension in string is 
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The particle energy density is obtained as 
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Fig 3.  Plot of rest energy density and string density (ρ=-λ) 
versus time t 
 
From equation (36), it is found that rest energy 
density )( equals to the negative sign of tension 

density .  Fig. 3 is the plot of rest energy density 
and string density (ρ=-λ) versus time t for 

5.3,3,5.2 respectively. The behavior of 

massive string model is quite similar to geometric 
string model, i.e., the rest energy density and string 
density (ρ=-λ) is an increasing function of time and 
it approaches a small positive value at present 
epoch. 
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Fig 4:  Plot of particle density and string density (ρp) verses time 
t 
     

    The expression for particle density p  is given 

in equation (37). Fig 4 is the plot of particle density 
verses time t for 5.3,3,5.2 respectively. It is 

found that the particle density is an increasing 
function of time and it approaches a small positive 
value at present epoch.  From (37), it is observed 

that the particle density p  is an increasing 

function of time and 0p  for all times. The 

nature of p clearly shown in Fig. (4) 

     The dominant energy conditions implies that 

0  and 
22   . These energy conditions do 

not restrict the sign of λ, accordingly the 
expressions given by equation (37) satisfies all 
these conditions.  

    According to Refs.(Kibble[33];Krori et al.,[55]), 

when ,1
||



 p

in the process of evolution ,the 

universe is dominated by massive strings, and  

when ,1
||



 p

the universe is dominated by 

strings . 

M    From Equation (38), we observe 

1
| |

p


 which shows that the universe is 

dominated by strings in the beginning of evolution 
of the universe. 

3.3. p-strings or Takabayasi strings 
 
Each massive string is formed by a geometric string 
with particles attached along its extension. Hence, 
the string that form the cloud are a generalization 
of Takabayasi’s relativistic model of strings (called 
p-string). This is simplest model wherein we have 
particles and strings together. 
     The p-strings or Takabayasi strings are 
represented by  )1(  , 0 . 

The string energy density ρ, tension density λ are 
given by 
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Fig 5:  Plot of   ω= [(ρ/λ)-1] verses time t 

The expression of ω= [(ρ/λ)-1] is given in equation 
(41). Fig. 5 is Plot of ω verses time t for 

5.4,4,5.3  respectively. It is found that ω is 

a decreasing function of time and it approaches a 
negative value at large value of t. As ω>0, we find 
that ρ, λ remain positive throughout the evolution 
of the Universe. 
    The rate of expansion of the Universe with 
respect to time is defined by Hubble’s parameter as 
well as DP. Detailed kinematical descriptions of the 
cosmological expansions can be obtained by taking 
in to account some extended set of parameters 
having higher order time derivatives of the scale 
factor. 

The spatial volume turns out to be 

 
2

23 1 teBAaV   (42) 

The above equation indicates that in both the 
models the spatial volume is zero at initial time       
t = 0. It shows that the evolution of our universe 
starts with big bang scenario. It is further noted that 
from Eqn. (31) the average scale factor becomes 
zero at the initial epoch. Hence, both models have a 
point-type singularity [56]. The spatial volume 
increases with time. 
    The Hubble’s parameter H, expansion scalar θ 
and shear scalar σ2become 
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The expansion scalar θ, shear scalar σ2 are given by 
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From the above equations, we can observe that the 
Hubble factor, scalar expansion and shear scalar 
diverge at t = 0 and they become finite as t→∞. It 
is noted here that the isotropic condition 

2

2


 becomes constant (from early to late-time), 

which shows that the model does not approach 
isotropy throughout the evolution of the universe. 
The mean anisotropic parameter is  

2
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The anisotropic parameter becomes constant for 
our model. From the above mentioned equation, it 
can be observed that our models are expanding and 
accelerating the Universe, which starts at a big 
bang singularity. 
 

4. Jerk parameter 
 

The jerk parameter is considered as one of the 
important quantities for describing the dynamics of 
the universe. The models close to ΛCDM (gamma 
cold dark matter) can be described by the cosmic 
jerk parameter j [57, 58]. For flat ΛCDM model the 
value of jerk is j = 1 [59]. Jerk parameter is a 
dimensionless third derivative of scale factor a with 
respect to cosmic time t and is given as 

    
3

3

3

2

dt

ad
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a
j




       (47)
 

The above expression can be written in terms of 
deceleration parameter as 

H

q
qqj


 22

      (48)
 

Thus, the jerk parameter for our models is 
 1231 2222   tttt eeeej        (49) 

 
From Fig. 6, it is clear that our value does not 

overlap with the value 0.81
0.75-2.16 j obtained from 

a combination of three kinematical data sets: the 
gold sample data of type Ia Supernovae [60], the 
SNIa data are obtained from the SNLS project [61], 
and the X-ray galaxy cluster distance 
measurements [62]. We have plotted the jerk 
parameter for different values of β in Fig.6. One 
can observe that the jerk parameter remains 

positive throughout the universe and is equal to the 
ΛCDM model at t ≥ 5.5 for the considered values 
of β. 
 

 
 
Fig.6 Behaviour of Jerk parameter versus t with different values 
of β 

 
5. r − s parameter 
 

The state-finder pair {r, s} is defined as [59] 
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The state-finder pair is a geometrical diagnostic 
parameter, which is constructed from a space-time 
metric directly. The state finder pair (r, s) is more 
universal compared to physical variables, which 
depend on the properties of physical fields 
describing DE, astrophysical variables are model 
dependent. For the flat ΛCDM model the state-
finder pair is {r, s} = {1, 0} [63]. The values of the 
state-finder parameter for our model are 

tt eer   2231      (51) 
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          (52) 

Clearly the state-finder pair  {r, s}→{1, 0} as t→∞.                                                                    

6. Conclusions 
 
String cosmological models play a vital role in the 
discussion of early stages of evolution of the 
Universe. Hence, in this paper, we have 
investigated LRS Bianchi type-II cosmological 
models in the presence of massive string source in f 
(R, T) gravity proposed by Harko et al. [24]. Our 
work in this paper will be helpful to study the 
structure formation of the universe in f (R, T) 
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gravity, which is a viable alternative to general 
relativity. We have used the three equations of state 
for strings which correspond to (i) geometric 
strings, (ii) massive strings and (iii) Takabayasi 
strings. In geometrical string model we have 
observed that proper energy density remains 
positive throughout the evolution. In massive string 
that proper energy density and particle density 
remains positive throughout the evolution.  It is 
interesting to note that the LRS Bianchi type-II 
string in this theory, do survive. However, we have 
presented the Takabyasi strings and massive   
strings in this particular space-time in this modified 
theory.The metric potentials A, B do not vanish for 
this model. The volume scale factor ‘a’ increases 
exponentially with time which indicates that the 
Universe starts expansion with zero volume 
fort=0.Jerk parameter and state-finder trajectory in 
the r −s plane are close to ΛCDM model. It is also 
noted that at t=0, the model represents a flat model 
in f(R,T) gravity in presence of massive strings. 
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