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This paper investigates the role of chirality atsdinpact on the electronic band structure andlémesity of states
in armchair and zigzag single-walled carbon naregulklectronic band structures and the densitytaiés for
various chirality values has been analytically stddand verified using simulation approach. It hasn observed
that with the increase in chirality, the total nieniof bands in the electronic band structure geteemsed and
more Van Hove singularities appears in its densftgtates, which further increases the current lniéipaof the
CNTs. The analytical study of band gap and thesidewof states at Fermi energy (E=0) has beenerhout and
compared with the data obtained from simulatiortge Tesults suggest that the simulated values ageéevith
the analytical values thus validating the resulihe paper also analytically verifies the metallinda

semiconducting behavior of the single-walled CNTs.

1. Introduction

Carbon nanotubes (CNTs) have gained tremendous
attention since these tubes were fabricated by
various groups [1-3]. The way the graphite sheet is
wrapped is represented by the chirality, (),
which is an important parameter in designing a
CNT. There is a need to investigate it furthertfer
role it plays in the structure of a CNT [4].nf=m=

I, wherel is an integer, the nanotube formed is
known as armchair single walled (SW) CNT and if
n=1& m=0, azigzag SWCNT is formed, whereas
for all other combinations af andm give rise to a
chiral carbon nanotube [5-6]. Wildest al [7]
further classified the CNTs and showed that a
SWCNT withn — m = 3, wherel is zero or any
positive integer are metallic and thus conducting
with a fundamental gap of 0.0 eV. If the equation
—m = 3 is not satisfied, the SWCNT behaves as a
semiconductor with a fundamental energy gap with
chirality (n, m), which can be calculated by the
equation

_ 2YoQc—c (1)

9 d(SWCNT)

wherey, (tight binding energy) and._. (carbon-
carbon spacing) are constants. The diameter of a
SWCNT can be represented as a function ahd

m are [4-6]

d(SWCNT)(nm) =0.0783/n%2 + m2 + nm 2)

Mathematically, the total number of bands in each
electronic band structure depends on chiralityr)
and can be calculated by the equation

4(n%+ m2+ nm)

N =
bands gcd(2n+m, 2m+n)

®)

where gcd stand for greatest common divisor. The
electronic density of states in CNTs was studies by
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Mintmire et al [8] in 1998 and the electronic
behavior of SWCNTs was first observed using
scanning tunneling microscopy by Wilder al [7]
and Odonret al[9] during 1998.

Later, the electronic density of states of
SWCNTs have been characterized and compared
with the results of (13, 7) and (12, 6) SWCNT
obtained using tight binding calculation, which
shows good agreement between experimental and
tight binding calculations [10]. Ouyangt al [11]
have confirmed in an experiment that the zigzag
SWCNTs of chirality (9, 0), (12, 0) and (15, 0) kbav
small band gaps from which they obtained a
mathematical expression by fitting, but in our work
these tubes show zero band gap.

Recently the band gaps and radii of metallic
zigzag SWCNTs were calculated using density
functional theory [12] and were compared with the
results of Ouyanget al [11] but the effect of
chirality on SWCNT performance has not been
discussed in any of the research papers published s
far.

This paper investigates the chirality dependenc
in armchair and zigzag SWCNTSs on their electronic
band structure and the density of states, which
subsequently  verifies the metallic and
semiconducting behavior of SWCNTSs.

2. Analytical Expressionsfor Electronic Band
Structure of SWCNTs

In this section, we have derived the electronicdban
structure for CNTs from graphene band structure.
To proceed, we start from the derivation of 2D
electronic band structure of graphene which can be
expresseas [13]
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wherek, andk, are thex andy components of the
wave vectok, yo= 2.7 eV is the overlap energy for
C-C bond anda = 0.246 nm is the graphite lattice
constant. The negative sign in Egn. (4) denotes
valence bands of graphene formed by bonding
orbitals while the positive sign in Eqn. (4) dersote
conduction bands of graphene formed by
antibondingz* orbitals. At temperature equal to
0K, all of the electrons occupy the loweband and
the uppem* band is empty.

The electronic band structure of a CNT can be
obtained from the electronic band structure of
graphene by quantizing the wave vedtalong the
circumferential direction of carbon nanotubes. & w
consider a CNT as an infinitely long cylinder, ther
are two wave vectors associated with it. The wave
vector kj, which is parallel to CNT axis and is
continuous while the wave vectdt, which is
along the circumference of a CNT, should
satisfy a periodic boundary condition

ki.Ch= wdiswenn k=27 p (5)

whered swent)is the diameter of a SWCNT and
pis an integer.

As a result, each band of graphene splits &nto
number of 1-D sub-bands labeled kpy This
boundary condition leads to quantized values of
allowed k. for SWCNTs. Then, the 1D band
structure of SWCNTs can be obtained from
cross-sectional cutting of the band structure of
2D graphene with these allowdd states. This
is called zone- folding scheme of obtaining the
band structure [14-17].

2.1 Derivation for Electronic Band Structure of
armchair SWCNT

E(ky)—+y0[1+4cos( )cos( )+4cos ( a)]_%

where (-1 <k, <1) and the indexp takes the
valuesp = 0, 1, 2, 3, 4, 5,.., [FA=2142 1], Ny paas

are the number of bands in electronic band stractur
of armchair SWCNT. Each band structure of
armchair SWCNT yield Menergy sub-bands witH 2
conduction and [2valence bands and of these 2
bands, two bands are non-degenemate |-1 are
doubly degenerate. The sub-bands obtaineg for

+ 0 & = | are non-degenerate and doubly degenerate
for other values op. The degeneracy comes from
the two sub-bands with the same energy dispersion,
but differentp-values.
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)+ aost ()]

(4)

An armchair SWCNT has chiralityn( m) = (I,

[), wherel is an integer. In this SWCNT, the
tube axis is parallel toy-direction and the
circumference represents thedirection (Fig.
1). Since the circumference of armchair
SWCNT is

Ch= avn?+ m?2 +nm
=aVli2+ 2+12=+3la
So,Ch =V3lax

Therefore, the periodic boundary condition
(Eqn. (5)) then becomes
kx Cx: 27Tp,
kxV3la = 2zp;
_ 2mp
k= 2 (6)

After putting the values op andl in equation
(6), we see that the allowed values kf lie
parallel to theky -axis (as shown in Fig. 1). It
can also be seen from Fig. (1) that the lines of
guantized circumferential wave vectok
intersect the graphene Fermi points, therefore,
the armchair SWCNT is metallic with no
bandgap.

Again, by putting the values & from equation
(6) to equation (4), we get the 1D band
structure of armchair SWCNT and can be
calculated as

)
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Fig.1 2D First Brillouin zone of graphene and
allowed wave vector lines shows metallic behavior
of armchair SWCNT.

2.2 Derivation for Electronic Band Structure of
zigzag SWCNT

A zigzag SWCNT has chiralityn(m) = (I, 0) where

| is an integer. In this SWCNT, the tube axis is
parallel to x-direction and the circumference
represents thg-direction. Since the circumference
of zigzag SWCNT is:

Ch=avn?+ m2+nm
=a\12+ 02+4+0.0=la
So, Ch = lay

Therefore, the periodic boundary condition (Eqgn.
(5)) then becomes

ky Cy= 27p;

ky la = 27l'p,

y= 22 ®)
By choosing the value gf andl, we see that the
allowed values ok, lie parallel to thek«-axis as
shown in Fig. (2) where the first Brillouin zone of
graphene is shown as a shaded hexagon with the
Fermi points at the six corners. In Fig. 2(a), the
lines of quantized circumferential wave vectgr
intersect the graphene Fermi points, which means
that the zigzaggWCNT is metallic without a band
gap, whereas in Fig. 2(b) the lines of quantized
circumferential wave vectdk, do not intersect the
graphene Fermi points, which means that the zigzag
SWCNT is semiconducting with a band gap.

By putting the values oky from Egn. (8) to
egn. (4), we get the 1D band of structure
zigzag SWCNT and can be calculated as:

Fig. 2 2D First Brillouin zone of graphene and allowed waxectors lines leading to (a) metallic zigzag

SWCNT (b) semiconducting zigzag SWCNT.

E(ky) = 270 [1 + 4cos (@) cos ("I—p) + 4cos? (Q)] 2

where(—1 < k, < 1) and indexp takes the values
P=0,1,2 3,4, 5rmeees, [FE 1], Nppaasare

the number of bands in electronic band structure of
zigzag SWCNT.

3. Resultsand Discussion
In this section, we have discussed the effect of
chirality of armchair and zigzag SWCNTSs on their

electronic band structures and density of states
simulated using porbital tight binding method.
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l

These results are obtained from the nanohub
simulator CNT Bands [18] in which the chirality, (

m) of the tube is varied while the tight binding
energy (3eV), carbon-carbon spacing (0.142nm),
length of nanotube (5nm) are fixed parameters.

3.1 Effect of chirality on electronic band
structurein armchair SWCNT

The electronic band structures of armchair SWCNT
for chiralites:n=m=1, 2, 3,4,5,6,7,8,9, 10, 11
and 12 as shown in Fig. (3). Each electronic band
structure is symmetric, that is, E)X = E (k) and
describes the energy-momentum relationship for
carriers within the first Brillouin zone. Each
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continued line is an allowed level of energy for
carriers or a sub-band. The sub-band closest to the
equilibrium Fermi level (E = 0) is of particular
interest, since they are usually the levels givisg

to current. The dashed lines sub-bands are non-
degenerate bands, whereas the solid lines sub-bands
are degenerate bands. The degeneracy comes from
the two sub-bands with the same energy dispersion.
Therefore, in each band structure of armchair
SWCNT, the upper and lower conduction as well as
valance bands are non-degenerate while other bands
are doubly degenerate.

It can be also seen from the Fig. (3) that vl
increase in chirality in armchair SWCNT by 1, the
total number of bands in its electronic band
structures increases by 4, which further indicates
that the number of carriers increases so that the
current capability of armchair CNT increases. Also,
in each electronic band structure of armchair
SWCNT, the upper valance band and lower
conduction band cross each other at Fermi energy
(E = 0), therefore, each armchair SWCNT exhibits
metallic behavior.

-10 -0.5 0.0 0.5 1.0

o.0 0.5 1.0

v

Fig. 3Electronic band structures of armchair CNT for efiéint chirality values.

The validation of simulated electronic band
structures in armchair SWCNT. In general, an
armchair SWCNT has chiralityn(= m = [). By
putting this chirality value in Egn. (3), the total
number of bands in each band structurAd$ands=
4. Now, forl =1, 2, 3,4,5,6,7,8,9, 10, 11, and
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12, that is, forif, m = (1, 1), (2, 2), (3, 3), (4, 4),
(5,5), (6,6), (7, 7), (8 8), (9, 9), (10, 1031( 11)
and (12, 12) we get, the total number of bands for
these chirality values = 4, 8, 12, 16, 20, 24,23,

36, 40, 44, and 48. Hence, mathematically, we can
say that with the increase in the chirality i) = (,
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I) in armchair SWCNT by 1 and the total numbers
of bands in its electronic band structure are
increased by 4. For each chirality value, the
equationn — m = 3p, where p is an integer, is
satisfied. It means all armchair SWCNTs shows
metallic behavior with zero band gap. Further, each
electronic band structure of armchair SWCNT
satisfies Eqn. (7). Hence, the simulated descnptio
of electronic band structures in armchair SWCNT
match very well with mathematical description thus
validating, both the simulations as well as anahfti
description.

3.2 Effect of chirality on electronic band
structurein zigzag SWCNT

The electronic band structures in zigzag CNT for
chiralityn=1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, and 12
are shown in figure 4. It can be seen here thédt eac
electronic band structure is different from elentco
band structure of armchair SWCNT (figure 3) but
the number of bands in its electronic band strestur
are the same in armchair electronic band structures

that is, with the increase in chirality valnen the
zigzag CNT by 1, the number of bands in its
electronic band structure also increases by 4hén t
electronic band structure of (3, 0), (6, 0), (9a6¢
(12, 0) zigzag SWCNTSs, the upper valance band
and lower conduction band cross each other at
Fermi energy (E = 0) and it shows metallic
behavior. For electronic band structures of chiral
values (1, 0), (2, 0), (4, 0), (5, 0), (7, 0), 03, (10,

0), and (11, 0) of zigzag SWCNT, there is a gap
between upper valance and lower conduction band
and show semiconducting behavior. As the chirality
of the semiconducting zigzag CNT increases, the
gap between upper valance and lower conduction
band decreases, which further indicates that the
energy required to move the electrons from valance
band to conduction band decreases and which in its
turn  increases the current capability of
semiconducting zigzag SWCNT. In all the

electronic band structures of zigzag SWCNTSs, the
upper valance and lower conduction bands are
doubly degenerate.
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Fig. 4Electronic band structures of zigzag single-wallddiT for different chirality values.

Validation of simulated electronic band struetu
in zigzag SWCNT. In general, a zigzag CNT has
chirality (n =1, m = 0). By putting this chirality
value in Egn. (3), the total number of bands inheac
band structure are Nnes= 4. Forl =1, 2, 3, 4, 5, 6,
7,8,9, 10, 11, and 12, that is, for, () = (1, 0), (2,
0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 19, 0),
(10, 0), (11, 0) and (12, 0), the total number of
bands for these chiral values of zigzag SWCNTSs are
4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48.
Hence, mathematically, we can say that with the
increase in the chiralityn( m) = (I, 0) in a zigzag
SWCNT by 4, the total number of bands in its
electronic band structure is increased by 4. For

chiral values (3, 0), (6, 0), (9, 0) and (12, Gje t
zigzag SWCNT shows metallic behavior because it
satisfies the equation — m = 3p wherep is an
integer. For chiral values (1, 0), (2, 0), (4,(®),0),

(7, 0), (8, 0), (10, 0), and (11, 0), the zigzag
SWCNTs show semiconducting behavior because
equationn —m = 3p is not satisfied. Each electronic
band structure in zigzag SWCNT satisfies equation
(9). The band gap of semiconducting zigzag
SWCNT is inversely related to its chirality as the
diameter is directly related to chirality. Hencke t
simulated description of electronic band structures
of zigzag SWCNT match very well with
mathematical description thus validating, both the
simulations as well as analytical description.
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Fig. 5 Electronic density of states of armchair CidiT different chirality values.

Result: |Density-Of5States vs. Energy
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Fig. 6 Simulated density of states of armchair SWCNT.

3.3 Effect of chirality on electronic density of
statein armchair SWCNT

Electronic density of states in armchair SWCNTs
for chirality valuesn=m=1, 2, 3,4, 5,6, 7, 8, 9,
10, 11, and 12 are shown in Fig. 5. Each eleatroni
density of state tells us about the number of aidw
states at certain energy. Each state can
accommodate up to 2 electrons having different
spins. This is Pauli's exclusion principle. At the
Fermi energy = 0), the density of state is finite in
each diagram, which means that all armchair
SWCNTSs are metallic in nature. Sharp peaks in the
density of states, called Van Hove singularities,
appear at specific energy levels. Further it can be
seen from Fig. (5) that as the chirality of the
armchair SWCNT is increased; numbers of sharp
peaks in the density of states are observed which
means more electronic states are available for
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current conduction. If we write, V2, vs, . . . are the
Van Hove singularities in the valance band and
C2, C3, . . . are the Van Hove singularities in the
conduction band, then the transition framto c;
(first symmetric van hove singularities) is around
3eV for the (1, 1) armchair SWCNT. This transition
from vi to ¢ decreases as the chirality of the
armchair SWCNT increases. The simulated value of
density of states & ~ 0 (Fig. (6)] is 3.46172e + 07
eV/icm for each chirality in armchair SWCNT.
Mathematically, the density of statesat 0 can be
calculated [19] as

8 8
E=0) T V3MYode—c  V/3%3.14x3eV+0.142+109m

D (

= 3.44e + 07 (eV*cm), which is 0.02 times less
than the simulated value. Hence, the simulated
values of density of states at Fermi energy are in
good agreement with the calculated values.
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Fig. 7Electronic Density of States of zigzag single-wé@NT for different chiralities

3.4 Effect of chirality on density of statesin
zigzag SWCNT

Electronic density of states in zigzag SWCNTSs for
chirality valuesn=1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 21
and 24 are shown in Fig. 7. It has been observed
that for chiralities (6, 0), (12, 0), (21, 0) & (2@),

the value for density of state is finite at Fermi
energy E =~ 0), which indicates that these zigzag
SWCNTs show metallic behavior [see Fig. 7(a)].

For chirality values (1, 0), (2, 0), (4, 0), ®, (7,
0), (8, 0), (10, 0), & (11, Q), there is a zeroueafor
density of states at Fermi enerdy £ 0), which
indicates the semiconducting behavior (see Figs.
7(b) and &(c)). In Fig. 8(b) and 8(c), it can als®

seen that the energy required to move the electrons
from valance states to conduction states (called
band gap denoted Iyy) decreases with the increase
in chirality, which further indicates that the cemt
capability of semiconducting zigzag SWCNTs
increase. Therefore, this feature of semiconducting
zigzag SWCNT can be useful for high performance
MOSFET applications. Further, the comparison of
simulated and calculated band gap of zigzag
SWCNT is also shown in Table 1 indicating good
agreement. For each metallic zigzag SWCNTS, the
simulated value for density of states at E£0)
[figure (8)] is 3.60283e + 07 while the calculated
density of states at (E 0) is 3.44e + 07, which is
0.16 times smaller than the simulated value

Table 1 Comparison of simulated with calculateddogap of semiconducting zigzag CNT

Zigzag chirality Simulated Calculated
(n=l,m=0) band gap [18] band gap (eq. 1)
(1,0) 6 eV 10.88. eV
(2,0) 4 eV 5.440 e\
(3.0 0eV 0eV
4,0 2.485 eV 2.72(eV
(5,0 2.291teV 2.17¢eV
(6,0) OeVv 0ev
(7,0) 1.4819 eV 1.554 eV
(8,0 1.407¢eV 1.36(eV
9,0 OeV OeV
(10, 0) 1.053:eV 1.08¢eV
(11, 0) 1.015(eV 0.98¢eV
(12, 0) OeV OeV
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Fig. 8 Simulated density of states of metallic zigzag SWCN

4, Conclusions

Impact of changing chirality in armchair and zigzag
single-walled CNT on electronic band structures

and density of states has been studied. It has been

verified analytically that with the increase in
chirality both in armchair and zigzag single-walled
CNTs by 1, the total number of sub-bands in their
electronic band structure increase by 4. It hanbe

further
simulations that all

verified analytically as well as by
armchair SWCNTs shows

metallic behavior, whereas zigzag SWCNTs shows
both metallic as well as semiconducting behavior.
Finally, it has been concluded that the metallic

SWCNTs are

useful for interconnects and

semiconducting SWCNTs are useful for electronic
devices.
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