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In this paper, we consider one-dimensional Schrödinger equation for the double cosine- and sine-squared potential. We 
construct the first order Darboux transformation and the real valued condition of the transformed potential for two 
corresponding equations. In this case, we obtain the transformed potential and wave function, and finally investigate the super-
symmetry aspect of such corresponding equation. Also, we show that the first order equation is satisfied by commutative and 
anti-commutative algebra with the constant condition at different limits for x. 

 
 

1. Introduction 
 
    There are several methods to study the 
integrability model. One of the methods that we 
focus here is Darboux transformation. It is well 
known that Darboux transformation [1] is one of the 
major tools for the analysis of physical systems and 
for finding new solvable systems, using a linear 
differential operator. Darboux constructs solutions 
of one ordinary differential equation in terms of 
another ordinary differential equation. It has been 
shown that the transformation method is useful in 
finding soliton solutions of the integrable systems 
[2-4] and constructing super-symmetric quantum 
mechanical systems [5-7]. Also, more general 
solvable cases were obtained by means of 
factorization methods [8] and via Lie algebraic 
approaches [9-13]. Darboux transformation is 
known as one of the most powerful methods for 
finding solvable Schrödinger equations with 
constant mass, in the context of which it is also 
called super-symmetric factorization method [14]. 
On the other hand during the past few years there 
has been great interest in studying class   
 

 
 
of trigonometric potentials [15]. The solution of 
such equation may be found by mapping it onto a 
Schrödinger-like equation. So, we take advantage of 
Darboux transformation and obtain the generalized 
form of double-cosine and sine-squared potential. 
The Darboux transformation has been extensively 
used in quantum mechanics in search of isospectral 
potential for Schrödinger equations of constant mass 
and position-dependent mass [16-21]. So, we take 
advantage from such transformation and obtain the 
effective potential, modified wave function, shape 
invariance condition and generators of 
supersymmetry algebra for the two corresponding 
potentials. This paper is organized as follows: we 
first introduce the one-dimensional Schrödinger 
equation for the double-cosine and sine-squared 
potential and apply such transformation to these 
equations. In that case, we show that the 
corresponding potential change to new form of 
potential. Finally, we study the supersymmetry 
version and shape invariance condition for 
transformed double-cosine and sine-squared 
potential. 
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2. Double-Cosine potential 
 
First of all we are going to consider a single particle in double-cosine potential which is given by [22], ���� = ��� cos��� + �� cos�2�� 									0 < � < 2�∞																																	� < 0	���	� > 2� �                                  

  (1) 
Where Schrödinger like equation will be as, �− ����� + �� cos��� + �� cos�2���ψ�x� = Eψ�x�,								ψ�0� = ψ�2π� = 0     

 (2) 
The maximum of the potential (1) occurs within the 
given interval between x = 0 and x = 2π and has the 
value of	�#$� = �� + ��, while the minimum occurs 
at x =π with the value of �#$� = �� − ��. Clearly, if �� = 0 and �� > 0, the problem corresponds to 
Mathieus equation [23]. Assume the general 

solution of the differential equation (2) is satisfied 
the boundary conditions takes the form: %��� =sin	 ()�* +���. In that case, we use such condition 

and make the second order equation (2) in terms of 
f(x), which is given by 

+,,��� + -./ (�2* +,��� − 014 + �� cos��� + 2��-.3���� − �� − 45 +��� = 0			 
(3) 

Now we choose the following variable, +��� = 6�7 (− 89� * :�;�,																; = -.3 (��*                         

 (4) 
And we obtain, �1 − ;��:,,�;� + <;=1 + 4���1 − ;��>?:,�;� − @1 − 2�� + 4�� − 44 − 4���� + 8���;��1 − ;��B:�;� = 0 

(5) 
So, the exact solution for the 4C and �� are 

:C��� = 1	,										4C = 14 − ��2 + ��	,															�� = −18��� 
(6) 

In order to change the equation (2) into the form with known polynomial, we need to choose the following variable :�;� = D�;�E�;� 
(7) 

So, one can rewrite the equation (5) as 

�1 − ;��E,,�;� + 02�1 − ;�� D,D + ;=1 + 4���1 − ;��>5 E,�;�
+ 0�1 − ;�� D,,D + ;=1 + 4���1 − ;��> D,D− F1 − 2�� + 4�� − 44 − 4���� + 8���;��1 − ;��G5 E�;� = 0 

(8) 
Here, we consider the following associated - Legendre differential equation [24-26] �1 − ;��E,,H,#I,J �;� − @K − L + �K + L + 2�;BE,H,#I,J �;�

+ M��K + L + � + 1� −N�K + L +N� + N�K − L�;1 − ;� O EH,#I,J�;� = 0 

(9) 
Also, we compare the equations (8) and (9) to each other and obtain the wave function u(y) and g(y) as 
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D�;� = 6P89Q� R1 + ;1 − ;S
JPIT �1 − ;��IUJUVT  

(10) 
So, the general form of g(y) and g(x) functions will be following 

:�;� = 6P89Q� R1 + ;1 − ;S
JPIT �1 − ;��IUJP�T EH,#I,J		,										; = -.3 (�2*, 

 

:��� = 6P89WXY�(��* Z1 + -.3 (�2*1 − -.3 (�2*[
RJPIT S 3\� (�2*R

IUJUV� S EH,#I,J��� 
(11) 

Also, we take advantage from comparing (8) and (9) and obtain the��, E and f(x) 

�� = 14 RN − K − L + 32S, 
(12) 

4 = 14 M�L − K�� − RK + L + 74S − 132 RN − K − L + 32S� − ��K + L + � + 1� + N RK + L +N + 12SO 
(13) 

And, 

+��� = 6P��89R�U�WXY�(��*S Z1 + -.3 (�2*1 − -.3 (�2*[
RJPIT S 3\� (�2*R

IUJUV� S EH,#I,J��� 
(14) 

3. Trigonometric Sine-Squared Potential. 
 
The second example we consider here is one-dimensional Schrödinger equation for the trigonometric sine-squared 
potential, which is given by 

M− ����� + �C3\�� (��*O _��� = 4_��� 
(15) 

Where,	_ ()$� * = _ (P)$� * 
This boundary condition leads us to consider following change of variable _��� = -.3 (��* +��� 

(16) 
So, one can rewrite equation (15) as 

+,,��� = 2� /�� (�2* +,��� + 0 1�� − 4 + �C3\�� (��*5 +��� 
(17) 

By putting  � = �	`a-3\��;� in (17), one can obtain 

+,,�;� = 3;1 − ;� +,�;� + R b1 − ;� − cS +�;� 
(18) 

Where b = 1 + c − �� and µ = �C��. By choosing suitable variable the same as previous case we have +�;� = D�;�E�;� 
(19) 
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We substitute equation (19) in (18) and obtain the following equation 

�1 − ;��E,,�;� + 02�1 − ;�� D,D − 3;5 E,�;� + 0�1 − ;�� D,,D − 3; D,D − b + c�1 − ;��5 E�;� = 0 

(20) 
Here, we compare equations (9) and (20) to each other, and arrive at the following expression for u(y), f(y) and f(x), 
respectively 

D�;� = R1 + ;1 − ;S
JPIT �1 − ;��IUJP�T  

(21) 

+�;� = R1 + ;1 − ;S
JPIT �1 − ;��IUJP�T 7H,#I,J �;�		,				; = 3\� �� 

And 

+��� = d1 + 3\� (��*1 − 3\� (��*e
JPIT -.3 (��*

IUJP�� 7H,#I,J ��� 
(22) 

On the other hand this comparison gives us opportunity to obtain the energy spectrum and the wave function, 
which are given by 

4 = ℏ�2c�� @��K + L + �� + 1B 
(23) 

And 

_��� = -.3 (��*d1 + 3\� (��*1 − 3\� (��*e
JPIT -.3 (��*

IUJP�� 7H,#I,J ��� 
(24) 

The corresponding energy spectrum always is positive, so we have a stable system. 
 
4. Darboux Transformation and Double-Cosine 

potential 
 
Now we are going to apply the Darboux 
transformation to corresponding example such as 
double-cosine and trigonometric sine-squared 
potential. So, we simplify the equation (5) as, g:QQ + h:Q − �: = 0 

(25) 
Where F and G and V are, respectively g = �1 − ;��		,									h = ; + 4��;�1 − ;�� � = 1 − 2�� + 4�� − 44− 4���� + 8���;��1 − ;�� 

(26) 
Here we introduce the new variable η that plays an 
important role in Darboux transformation. So, we 
can write the above equation with η variable, which 
is given by 

\:i + j: = 0	,								j = gkQQ + hkQ − � 

(27) 
The Darboux transformation helps us to write the 
equations (25) and (27) in a new form with different 
potential as \:li + ĵ: = 0	,					ĵ = gkQQ + hkQ − �n                                           

(28) 

Where,�	 ≠ �n , implies :�;� ≠ :l�;�.	 We introduce 
transformation operator ∆ as ∆�\k + j� = �\k + ĵ�Δ 

(29) 
These are called Darboux transformation operator 
for the Hamiltonian η and ĵ, respectively. 
The operator ∆ transforms any solution+�;� into a 
new solution +s�;� = Δ+�;� 

(30) 
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Let Darboux transformation operator be the form of 
a linear, first- order differential operator Δ = ` + tkQ 

(31) 
Where, we take special case as A = B.  In order to 

find A or B, we consider the explicit form of ∆ and ∆n  
in form of the Darboux transformation and apply it 
to the solution g(y), so  ∆�\ki + j�:�;� = �\ki + ĵ�Δ:�;�  (32) 
Making linear independence of g(y) and its partial 
derivatives, we collect their respective coefficients 
and put them equal to zero, from which one can 

obtain the following value for the functions A and �n  2g = �+�Qt			 ⇒ 		t = P�Q �1 − ;��    (33) 

So, the Darboux transformation operator will be as 

∆= −1; �1 − ;��=1 + kQ>		.a		∆
= −-./ (�2* 03\� (�2* − 2 ���5 

(34) 

The relation between � and �n  will be as 

�n = v + 2;� − 21 + ;�; + 4�� − ;��16�� + 1� 
(35) 
Now, we achieve the generalized form of wave 
function, which is corresponding to usual wave 

function +s��� as 

+s�;, /� = ∆+�;, /� = −1; �1 − ;��=1 + kQ>+�;, /�,				; = 3\� (�2* 
+s��, /� = -.3� (�2*3\� (�2* xyz

y{Z1 + 12�� sin�2�� − L − K3\� (�2* +
K + L + 34 -./ (�2*[ +��, /�

+ 6P��89R�U�WXY�(��*S
xyz
y{Z1 + -.3 (�2*1 − -.3 (�2*[

JPIT 3\� (�2*
IUJUV� 7,H,#I,J ���

|y}
y~
|y}
y~

 

(36) 
5. Darboux Transformation and trigonometric 

sine-squared potential 
 
The one-dimensional Schrödinger equation for the 
trigonometric sine-squared potential is given by 

_,,�;� = 3;1 − ;� _,�;� + R b1 − ;� − cS_�;� 
(37) 

Thus, the trigonometric sine-squared potential 
equation (37) is �1 − ;��_QQ − 3;_Q − =b − c�1 − ;��>_ = 0 

(38) 
By taking g = �1 − ;��	, h = −3;	 and the 
potential,� = b − c�1 − ;��, we can rewrite the 
above equation as, gkQQ + hkQ − � = 0 

(39) 
And \_i + j_ = 0	,						j = gkQQ + hkQ − � 

(40) 

 
In order to have same equations as (38) and (40) 
with different potentials, we have to write following 
equation, 

     \_si + ĵ_ = 0		,									ĵ = gkQQ + hkQ − �n      (41) 

Where � ≠ �n  and this imply_ ≠ _s. In order to 

obtain the modified potential �n  and corresponding 
wave function for equation (41), we introduce 

operator Δ, which is called Darboux 

transformation. The general form of such Durboux 
transformation will be 
                        ∆= ` + tkQ                                 (42) 

For simplicity we suppose A = B. By using the 
following property of Darboux transformation 
                  ∆�\ki + j� = �\ki + ĵ�                     (43) 
One can obtain the generalized form of wave 
function, which is corresponding to usual wave 
function C as _s�;, /� = Δ_�;, /� = =1 + kQ>_�;, /�,				; = 3\� �� 
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_s��, /� = 01 − IUJU�� Ri$H��WXY��S + JPIWXY��5 _��, /� + � 0�UY�H���PY�H��5
(���� * -.3 (�$*(����9� * E,H,#I,J ���             (44)

In order to obtain the parameter A, we need to use 
the equations (38) and (43) in following expression∆=\ki + gkQQ + hkQ − �>_= =\ki + gkQQ + hkQ − �n>∆_ 

(45) 
Making linear independence of C and its partial 
derivatives, we collect their respective coefficients 
and equal them to zero, so we can obtain A as 
 

          ̀ = K√g = K�1 − ;�                 (46) 

 
And the modified potential is given by �n = ��� − ��4 + 2/��� �� + 23\� �� 

(47) 

Where,	_�;, /� = 6P���ℏ _�;� 
 

6. Super-symmetry and Darboux Transformation 
 
In what follows, we will prove that the formalism of 
supersymmetry for our generalized trigonometric 
Double-Cosine potential equation is equivalent to the 
Darboux transformation. So, here we introduce the 
following self- adjoint operator 	�\ki + ��∗ = \� + �                          (48) 
Taking the operation of conjugation on Darboux 
transformation in Eqn. (21), we obtain 
       �\�i + j�Δ∗ = Δ∗�\ki + ĵ�                  (49) 

Where the operator  Δ∗ ad joint to Δ = P�Q �1 −;��=1 + kQ>  in double-cosine system is given by Δ∗ = P�Q �1 − ;��=1 − kQ>                (50) 

Eqns. (29) and (30) can be rewritten by single 
matrix equation 

0\ki + j 00 \ki + ĵ5 0++s5 = 0                (51) 

We assume that � = �\�:�j, ĵ� and g = =+, +s>�, 

so the above equation can be written as 
              @\ki + �Bg = 0                             (52) 
Two supercharge operator � and �∗ are defined by 
following matrices � = �0 0∆ 0�	,								�∗ = �0 ∆∗0 0 � 

(53) 

Where ∆ and ∆∗ are the operator given by Eqns. (36) 
and (50), respectively. One can show that the 
Hamiltonian H satisfies the following expressions F�, �G = F�∗, �∗G = 0 @�, \ki + �B = @\ki + �,�B @�∗, \ki + �B = @\ki + �,�∗B 

(54) 
Considering the complementing relations of the 
super-symmetry algebra; the anti commutators are F�, �G and F�∗, �∗G. We obtain the operators � = �∗� and �n = ��∗ and consider their relations 
with our Hamiltonian j and ĵ So, one obtain the � 

and �n as follow, � = |K|�<g=1 − kQQ> − �g�Q=kQ + 1>? 
(55) 

And 

�n = |K|� 0g=1 − kQQ> − �g�Q=kQ + 1> − 12 �g�QQ+ gQ2g5 
(56) 

Where, the index ; will be derivative with respect 
to	;. In order to have shape invariance and super-

symmetric algebra we need to obtain, �n − �. If such 
value be constant or zero there is some super-
symmetry partner for such systems. Otherwise we 

need to apply some condition in �n − �  to have 
constant value. So, we will arrive at following 

equation for the �n − �  �n − � = |K|� �1 + 3\� (��*�              (57) 

By using the condition Ψ�0� = Ψ�2�� = 0  and, � ∈ @0,2�B the value of �n − � be zero or function of K, and we have super-symmetry for the Double-
Cosine potential in case of K constant. So, in general 
we can say that there is shape invariance for usual 
and generalized potential under the above 
mentioned condition. The shape invariance for the 

potential is: �n = � + -.�3/��/. 
In second example, we consider sine-squared 
potential, so ∆ and ∆∗ will be ∆= K�1 − ;�=1 + kQ>                    (58) 

And ∆∗= K�1 − ;�=1 − kQ>                  (59) 
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For the sine-squared potential also we consider 
information from previous section such as equations 

(51-54) and � = �∗� and �n = ��∗, one can obtain � and �n as(55) and (56). 
Otherwise, we need to apply some condition in �n − �  to have constant value. So, one can obtain 

the following equation for the�n − � �n − � = |K|� R1 − ;1 − ;�S 

(60) 
We mention here that if we want to super-symmetry 
algebra we need to have also the following 
commutation relation, and also anti-commutation 
relations between � and�U. F�, �UG = �		,							F�, �G = F�U, �UG = 0 

(61) 
If we look at the equation (61), we need to apply the 

condition �n − �  be zero or constant, in the 

corresponding condition �n − �  be zero or function 
of K (K  is constant).  So, we have super-symmetry 
system, and it means that two potentials are satisfied 
by the shape invariance condition. 
 

7. Conclusion 
 
In this paper, the Double-Cosine potential equation 
was studied. The first-order Darboux transformation 
was applied to the corresponding equation. In order 
to relate super-symmetry and Darboux 
transformation, we discussed the supersymmetry 
algebra and its commutation and anti-commutation 
relations. It was shown that to satisfy such anti-

commutation super-charges, the term �n − �  must 
be constant. Also, we applied this condition to �n − � and showed that in the interval@0,2�B, K  
must be constant. This condition completely 
guarantees the relation between super-symmetry and 
Darboux transformation. This result plays an 
important role for any solvable, non-solvable and 
quasi-solvable systems. 
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