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New Exact Energy Eigen-values forNI1 QYH) and (MIQHM) Central Potentials:
Non-relativistic Solutions

Abdelmadjid Maireche
Laboratory of Physics and Material Chemistry, Phggiepartment, Sciences Faculty,
University of M'sila,M’sila, Algeria

In this paper, we solved modified Schrédinger eiguaMSE for two potentials namely: modified inversely quatic
Yukawa potential plus inversely quadratic Hellmgotential MIQYH) and modified inversely quadratic Hellmann plus
Mie-type potential MIQHM), which are equal to the sum of inversely quadrétikawa potential plus inversely quadratic
Hellmann and inversely quadratic Hellmann plus Mige potential, respectively, using a generalizatdd Boopp’s shift
method and standard perturbation theory insteadsiofg directly star product method. We then obthimedified energy
eigenvalues and corresponding modified Hamiltoniarsth three dimensional non-commutative spackprase NC-3D:

RSH.

1. Introduction

In the last few decades, central potentials in fwo-
three- and D-dimensional spaces have been studied
with various methods in different fields of nuclear
physics, spectroscopy, quantum chemistry, and
many other fields of sciences using three
fundamental equations: Schrédinger, Klein-Gordon
and Dirac equations. The first one is undoubtedly
the most widely studied equation of modern
physics [1-26]. Over the past few years, a
considerable effort has been made to solve
Schrédinger equation with previously central
potentials in two as well as in three dimensions in
the case of non-commutative space and phase to
give profound physical and chemical interpretation
of different fields at nano and Plank’s scales [27-
53]. The algebraic physical structure of ordinary
guantum mechanics based on the following
fundamental three canonical commutations
relations (CCRs), which plays as fundamental
postulates of quantum mechani{:ﬁ,, ij, [xi ,ij

and[pi, pj], in both Schrédinger and Heisenberg

pictures, respectively, as:
x.pi|=ig and |x.x]=|p.p;]=0 (1a)

And
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% (0) p; (0)] =15, and | (1), ()] =[p () p, (t)] =0

(1b)

Where the usual canonical coordinates and new
momentum x; (t) and p, (t) are determined from

the projection relations:

X, (t) = expH (t ~to ))x; expiH (t —t, ) 10
p; (t) =exp(H (t —1 )) p; exp(-iH (t — ))
Here {xi (t)} , {pi (t)} and H are Hermitian

operators on a Hilbert space of physical states,
which satisfy the Heisenberg equation of motions,
respectively, as

dx‘d'—t(t):i[H,xi (t) anddF;;t(t):i[H- pi(t)] (1d)

There will be changes in nhoncommutative three
dimensional spaces and phases to the new
canonical commutations relations (NCCRs), in
both Schrédinger and Heisenberg pictures, as
follows

N DA N DA R DA —
[xi,pj}:idj,[xi,ij:iaj and [pi,pj}:iﬁij

(22)

B )] =10, | (95,0 =16, and ). 5,0)| =10

(2b)
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The two parameter§”” and ", very small as
compared to the energy, are elements of two
antisymmetric real matrixes an(d:) denotes the

new star product, which is generalized between
two arbitrary functions f(x, p) and g(x, p) to

(f Dg)(x, p) instead of the old producﬁn‘g)(x, p)
[29,30,32,51,52,53]:

(0% p=( fdx d—ize'vafgﬁ "Qgﬁ _izgwagp) 6% 3]
(3a)

The new canonical coordinates and new
momentum X; (t) and p, (t) are determined from

two projection relations, respectively, as

)’Zi (t) =exp(H nc(t _tO) * 5\(i * exp(-iH nc(t - tO))
f)i (t): exp(H nc(t _t0» * f)i * expiH nc(t _to))
(3b)

Which satisfy the new Heisenberg equation of
motion given as

& () i[an % (t)} and %t(t):i{H P (t)}

dt
(3¢)

The formalism of star product, Boopp's shift
method and the Seiberg-Witten map played crucial
role in this new theory. The Boopp’s shift method
will be applied in this paper. Instead of solvife t
Schrddinger equation in (NC-3D:RSP) with star
product, the equation will be treated by using
directly the two new commutators, in addition to
usual commutator on quantum mechanics, in the
both Schrédinger and Heisenberg representations
[28-34,43-53] given as

[x.%]=i6,and [p.p;]=i6i  (4a)

And
[% (0%, ®)]=i6, and [B(0) ;@)]=i8s (4b)

Where, the new operators and f)i in (NC-3D:
RSB are depended on ordinary operatey
and P and from the projection relations for

(c:h = landi, j :f%) we obtained
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. 6 1 Y3
X=X——2p —Bp yoy-—_£= —
2py szy y 2IOX 2DZ
é 12
5_ 31 32
and z=z-—=p —-—%
5 Py 5 Py
(5)
And
X 612 O3 _ . 2 6
and bz_pz_ ;1 X_%y
(6)

The non-vanish 9-commutators iIMNE-3D:
RSB can be determined and given as

[% B.) =19, b,]=[2 B.]=1,
[X)A’]zi‘glz’[k2]=i913’[y2]=i923 (7)
(B By)=1612,[By. B,] 21625, [y, B,] =163

The aim of this work is to study the twie)YH)
and (QHM) potentials in non-commutative three-
dimensional space and phase to discover the global
spectrum in this new symmetry, which plays an
important role in many fields of physics such as
molecular physics, solid state and chemical physics
based on two principal references [25,26]. This
work is based essentially on our previous works
[28-34,43-53]. The rest of this paper is organized
as follows. In the next section, we briefly present
and review the basics of eigenvalues and
eigenfunctions for:IQYH) and (QHM) potentials
in ordinary three-dimensional spaces. In Sec. 3, we
give a brief review of Boopp’s’ shift method, then,
we derive the spin-orbital non-commutative
Hamiltonians for KIQYH) and MIQHM)
potentials in (NC-3D: RSP), we find the exact
spectrum produced by non-commutative spin-

orbital Hamiltonians I—]wyh and Hg,nn for
(MIQYH) and MIQHM) potentials by applying
ordinary perturbation theory. Then we deduce the
exact spectrum produced by non-commutative
magnetic HamiltoniansH myn and H ., for
(MIQYH) and MIQHM) potentials in (NC: 3D-
RSP). In Sec. 4 we summarize the global
spectrums for NIIQYH) and MIQHM) potentials.

Finally, in Sec. 5, we present our concluding
remarks.
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2.  The (QYH) and (QHM) Potentials in
Ordinary Two Dimensional Spaces

The purpose of this section is to give a briefegwi
of eigen-values and eigen-functions for two
ordlnary (QYH) and (QHM) potentials,
b/yh th ] based on two references [25,26],

respectively, and given as

1 1
Vyh()zr_z(b -V )+ r(Z\/O—a—b5)+(b—2\/0)52
(8a)
th() B';b a- Ar+b5 (C+b52) (8b)
r

Where, 1, (a,b) , 0, (A, B,C) are inter nuclear

distance, strengths of the Coulomb and Yukawa
potentials, the screening parameter, respectively,
andV,is the dissociation energy. The ordinary two

Schrddinger equations (SE) with two potentials
Vyh(r) and th(r) can be written in spherical

coordinates(r,e, ¢) [25,26] as

1(_ 10>
*(‘?g(r

+Vyh(r)qJ(r .0,

Jet oo L)

g
¢)=E,¥(r.6,9)

G r0)

(92)

S sk i) ted

(9b)

Where, E, and E,, are ordinary energies
correspondingvyh(r) and th(r) in ordinary

three-dimensional spaces, the method of separation
of variable has been applied as given in two
references [25,26]:

W(F):R%(r)qom. (©)0 () (10)

The

Rimeni (r)and the two spherical functiong, (6?)
and CDm(¢) for two ordinary [QYH) and (QHM)

potentials satisfying the following four differeati
equations, respective[25,26], as

two radial functions Rymﬂ(r) and

177

(11)
d’gn (6) dgg (6)( ,__m?’
o) —15 A - 6)=0
d6? €4 sin(6) n ©)
dzcbm(¢) 2 dcbm(¢) =0
dg? dg
(12)
Here, A =I(1 +1) , according Nikiforov-Uvarov
method, the normalized energy eigen-functions

Wyh(F) and corresponding eigen-valuds,, for
ordinary (QYH) potential [25]

“ () N2 S 1+4V1)/2 Jaz) 1+ (—2\/52)%|(6’)¢m(¢)
(13a)

and

U2, —a-bd)* /2
[n+ 2o -Vp) +(1 +1/2)° T

(13b)

E,n=(2v, -b)o? -

y!

The normalized energy eignenfunctiomma(F)
and corresponding eigenvalu&s,,, for ordinary
(IQHM) potential [26]

() . E+( 1Ty, )2 eaz (—2\/52)%.(9)%(4”)

(14a)
and
CedP- ula-A0)* 12 :
(n +% ++2u(B+b)+( +1/2)2j
(14b)

Where,z=r?, N, is the normalization constant
and the two factors ¢, ,
equations

¥, ) are given by
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{y1=2y(b—vo)+l(l+1) for Vyu(r) (15)

Vo =2u(B+b) +1(1+1) for V()

3.  Non-commutative Three Dimensional
Phase-spaces (NC-3D: RSP) Hamiltonians for
(MIQYH) and (MIQHM) Potentials

3.1. Formalism of Boopp's shift method

The main goal to this sub-section is to present
fundamental principles of modified Schrédinger
equation in (NC-3D: RSP) based on our previous
work [29,30,32,51-53]. To achieve this goal, we
shall apply four important steps to ordinary
Schrddinger equation described below.

1- Ordinary three-dimensional two Hamiltonian
operators [I—A|yh(pi,xi ) Hm(pr % )] will  be
replaced by new two Hamiltonian operator
S|_|:| ncyh(f’i X ) |:|nchm(l5i X )J respectively.

2- Ordinar(/ two complex wave functions

[lv (*) q—'hm*l will be replaced by new two

complex wave functions [wncyh()wnchm(F)j
respectively.
3-Ordinary two energies(Eyh,Ehm) will  be
replaced by new two vaIue(aEncyh, Enchm) ,
respectively.

And the last step corresponds to replacing the
ordinary old product by new star prodL(E),

which allows us to construct the two modified
Schrddinger equations in botNC-3D: RSP as

anyh( Pi, X )Dwncyh( ) EncthJncyh(F) (16a)

HAnchm( Pi s X )Dwnchm( ) EncthPnchm(F) (16b)

The Boopp's shift method allows us to find the two

reduced and modified Schrédinger equations
without star product as

H yh(ﬁi ' 5\(i )prh (r): Encth',yh (I’) (176.)

H hm(f}| 1§(i )lthm(r): Enchmlphm(r) (17b)
Where the two modified Hamiltonians

Hyh(f)i,fq) and Hhm(ﬁi,ii) for two (MIQYH)
and MIQHM) potentials defined as a function of
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the two operatorsx; and p; , which can be

expressed as a function of generalized coordinates
)g( X, z) and generalized momentums

pi (px, Py, pz) in the usual quantum mechanics as

a2

Hyh(f’i X ):Z_ilu+vyh(r‘)

(18a)

a2
H (B aﬁi)=%+vhm(f) (18b)
Here the two modified Vyh(f) and V()

potentials are obtained by the following procedure,
respectively, as

vulf)= 0o Po a0 o)
(19a)
Vo(f)= 222 27 é+b5 +(c+bs?)  (190)
r

Based on our references [29,30,32,51-53], we can

write the two operators ? and bz in (NC-3D:
RSB as
F2=r2-LO
62 __2 _3 (20)
2u 2u  2u

Where, the two couplingk® and Lo are given
respectively by

LO=LO O3+ L8 (21)
And

Lo= Lxélz‘*‘ Ly@23+ ng’ls (22)
With, © Eg , after straightforward calculations

one can obtains the different terms fodlQYH)
and MIQHM) potentials in IC-3D: RSP as
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b=Vo _b=Vo , (b- vo)Eé
r r r
B+b_B+b (B+b
2 2 ( 4 )LG
r r r
2\/0—:51—b5=Z\/O—a—b5+(2\/0—a—b5)|:é
F r 2r3
—AA+b5=a—A+b5+(a—A+b5)Eé
F r 2r3
(23)

Which allow us to write the twoMIQYH) and
(MIQHM) global potenuals( myh( )thm(r)) in

(NC-3D: RSP) as

1
w2 da-and
+(b— A )P +Vperfyh(r,e,0)
thm(f) - B':b _ a-A+bo
r r (24b)
+lc+bo)+v,.nlrn0.8)

Where the two additive operatow_,, (r,@,@)
and Vpert—hm(raeig) are given by

V pert-yh (r ,G),E?)
:[(b—vo) L (2 —a—bb’)}l:é“:_é (25a)
r 2r3 2u

Voernml»©,8 LO+——
perthm( ) r4 2r3 2/.1

(25b)

{(B+b) (a- A+b5)} I

We can observe that the above two operators are
proportional to two infinitesimals paramete&

and@, which allows us to consider them as a two
perturbative terms.

3.2.  The spin-orbital non-commutative
Hamiltonian for modified (1QYH) and (IQHM)
potentials in (NC- 3D: RSP)
In order to discover the new contribution of two
perturbative terms Vpert_yh(r,G),Z?) and

Voernml'©,6) for two (MIQYH) and MIQHM)

potentials, we turn to the case of spin % particles
described by the (MSE), we make the two
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simultaneous transformations
LO_20SL and LO-20SL  (26)
Then the above two perturbed operators

Vpen_yh(r,e,?) and Vpen_hm(r,e,é) becomes,
respectively, as

Voo nlr.0.8)= {(b -V,) , (2% -a-bo) +i}[§

ré 2r3 20
(27a)

ré 2r 2u
(27b)

Voermir+©,8)= z[(B““ b) (a-A+bo) +i}[§

Here g denotes the spin of a fermionic particle

(like electron). It is possible to replace the spin
- 2 2 o2

orbital interactionLS by G2 =%(J -L -S j

to obtain directly the corresponding eigenvalues,
and then new physical form of Eqgns. (27a) and
(27b) can be expressed as

(b‘Vo) (2‘/0 a—béj

Vperfyh(r'e’g):{ 2

“2 w2 o2
J -L Sj

r x3
(28a)
Vperth rOH) {(B-Fb) = A+bbj I«»Z 02 62
(28b)
©2 w2

It is well known that four operatorsJ( , L

2
S and J,) form a complete basis in ordinary
quantum  mechanics, then the operator

©2 w2 w2
(J -L —Sj will give two eigen-values

1 1 3 i
K, %{@ J_rzjq +§¢:|)+|(| +])—Z}, corresponding

j:|+i

3 , respectively [29-30,32,51-53]. Then,

one can form a two diagonal matrixes,, ., and

HAS(}hm of the order(3><3),

elements: (I—] Scryh)n’ (H soyh )22 : (l:l Scryh)33] and

[(H’\ so—hm)ll’ (HA so—hm)22' (|:| so—hm)gs] for (MIQYH)
and MIQHM) potentials in both (NC-3D: RSP)

with non null
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given by
b-\,) (2—a . .
seyh)l kﬂ{G{ rO) ((’zﬁbé)]+2#}|fj=l+;zsp|mp
~ (b-\p) (2v a—hd) _
(Hseyr-)zz k_a{@( rO OTJ"'ZI iff =I- QSpIKﬂOW\
(F'Sﬁyh)sszo
(29a)
And

(ﬁsehr,)u: Ka{eﬁ(B;j —("J‘";;'bd)}i}if j =l +1=spimp
), KHH B+ a-mbé)} i}'ﬂ -2 spisiow

rt 28
(ﬂsehn)sfo

(29b)

After some calculation, one can show that the two
radial functions Ry, (r) and Ry (r) for
(MIQYH) and MIQHM) potentials and two
spherical functionsg,, (6?) and ¢m(¢) satisfy the

following differential equations, in the new
structure NC-3D: RSP, as

sz%m(r) + Y _2»”2

r# . 2u
(30a)
-Vn(r)
dzR1m—nl(r)+ " R-| ()
dr? _{(B+b)( A+b5) 1}—4 il
r pio 2u
(30b)
And

2
—d f;"z(g) +cot(6?) dﬂd“' (5) (/l - .m

d?0,(g) , 2 dPn(¢)

=0
dg? dg

(30c)
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3.3. The exact spectrum produced by non-
commutative spin-orbit Hamiltonians

H o-ynand H o for (MIQYH) and (MIQHM)
potentials by using the standard perturbation
method in (NC- 3D: RSP)

The aim of this sub-section is to obtain the
modifications of the energy levels fof" excited
states E,,, and Ey,, corresponding to a
fermionic particle with two polarizations, spin up
and spin down, respectively, in the first order of

two infinitesimal parameter® and 8. In order to
achieve this goal, we apply the standard
perturbation theory using Eqns. (13a) and (27a) for
(MIQYH) potential

En=y M’ KI 2t %)M[ ol aled] 02 u

{(wo J(26-and| B

&E
(31)

dz

40 3 [ . _ —a—| y:
=Nk T2 e i g W) e, 0
2 o Z op 2u

(32)

It is possible to write bothE, ., and Ey, as

functions of three term‘E}h, Tyzh andTyn as

6 —
Euyn =5 |N | k{ ofri+T3 )+2—#Tyh} 33)

And
H —
Egyn = |N | k—{ ( +y ) Z/ITyh} (34)

The explicit mathematical forms of three

termsT},, T4 and Tyh are given by

T)}h:(b_VO)TZ[H_B 1+4y1]}le_2&[@(—2\/52ﬂ2dz

.Y —;—w)fg(— e [ Y

P 1+4y1)}—1e_2@[@(_2@2)]2d2

0
(35)
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Applying the following special integration [54]

Iotf"l extt-&)ra(d)ry (d)de= a—”;( :.F(Zj 5 : 2);({:: j)ﬂ)

3F2(—m,a,a—/9,—n+a,/1 +],1)
(36)

To obtain the modifications to the energy levels fo

h states, where

n excited
sFo(-ma,a-B-n+a,A+11) denotes the

hypergeometric function obtained from
qu(al,...,ap,ﬂl,....,ﬂq,z) forP=3and q=2.

After straightforward calculations, we can obtain
explicitly the results as

foVa) r( S i o
S )
5 n-3 iy v

Tylh = (b_Vo)

3 Fz(‘ ny1+4y -

(37)
And
T2 - (2v, -a-ba) (Zf) (n+2)r(n’+,/1+4y1 Jtl)
yh =

2 (n)’r (3+ 2\/1+4y1)r(1+\/1+4y1)

3F2(— N1+ 44 0\/1+4y, —n,\[1+4y, +1:L)

(38)

b {3
o e )

n%+\/1+4y1,g;g+\/l+4yl -n,/1+4y, +1;1j

(39)

Tyh=

3F2(_

Inserting the above obtained expressions (37), (38)
and (39) into Eqgns. (33) and (34), gives the result
for exact modifications ofE,,, and Ey,

produced by new spin-orbital effect for (MIQYH)
potential as

_1 2 6 =
Eu—yh _E|Nn| k+{®Tyh +2_,UT yh} (40)

21 2 0 =
Edyn _§|Nn| k—{eTyh +2_#Tyh} (41)
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Where the new factof,;, is given by

Ty = Tylh +Ty2h (42)

To obtain the modifications to energy levels for
n" excited statesE,,, and Eyp, for spin up
and spin down, respectively, in the first order of
two parameter®© and 8 produced by spin-orbital
influence for MIQHM) potential, it is sufficient to
apply the following simultaneous transformations:

i-be
b_VO - B+b
N, -a-hd - —(a- A+hbd)

(43)

Thus, the three previously obtained facfﬁ§§,
Tyzh and -Fyh will be replaced by three new factors

Thlm, Thzm and -Fhm, respectively, as

(ZJ»)JW% [n+7j (n+M+l)
[Ej @*JW)
Fo Ty, -5 -2y, -n- 2 ivay, +11)

Tim = (B + bO/

(44)
T2 __(a-A+bo) (2() (n+2)l‘(n’+,/1+ 4y, Jfl)
" 2 n) (3+ 21+ 4y2)'(1+\/1+ 4y2)
Fz(‘” N, ,0;\/1+4y1 -n,/1+4y, +1;L)
(45)

(zf)‘/m zr[ ] e Jieay +3
r(ajl'(lh/l*TVz)

3F2[‘ n,g 41+ 4V2§;§ +y1+4y, —n,\[1+ 4y, +11j

(46)

Thm=

Which allows us to gett the following results for
exact madifications ofE,,, and E4,, for a

polarized fermionic particle with spin up and spin
down, respectively, in the first order of two

parameter$d and @ for (MIQHM) potential, as
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(4
Evnm = |N 1’k {OThm +2—IuThm} (47)
g
Egnm = |N | m{eTkm—Thm} (48)
2u
Where, the factofl,,, is given by:
Thm = Tr}m +Th2m (49)

3.4. The exact spectrum produced by
noncommutative magnetic HamiltoniansH ..,

and H ., for modified (IQYH) and (QHM)
potentials in (NC-3D: RSP)

Having found out how to calculate the corrections
of energies for the automatically produced spin-
orbital, we can discover a second symmetry
produced by the effect and the influence of the
non-commutativity of phase space, known by
modified Zeeman effect for MIQYH) and
(MIQHM) potentials. To find this physical
symmetry, we apply the same strategy as in our
previous works [29,30,32,51-53] given as
6 - oB

© - B and (50)

The two parametersy and o are just only

infinitesimal real proportionality constants aid
is a uniform external magnetic field, which we
orient along(Oz) axis and then we can make the

following two translations for (MIQYH) and
(MIQHM) potentials

{G{( r‘Vo) (2-a-bg) a—ba) } E[A{ b-Vp) , (2%~ a—bé)j zijz
{G{(Br:b) (a-A+baj } E[ A{ B+b) a—A+baj 2;1]

(51)

Which, allow us to introduce the two modified new
magnetic HamiltoniansH mynh and H o p, in

(NC-3D: RSBk for (MIQYH) and MIQHM)
potentials, respectively, as

H m-yh :()([(b _:/0) + (2 _a_bd)j+20'uJ(_é3 + HAZ)

r 2r3
~ [ ((B+b) (a-A+bd)). 0 \=z= . A
Hmhm_()([ . - o3 +27ﬂ (B‘]+Hz)

(52)
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Where, ﬁzs—§§ denote to the ordinary

Hamiltonian operator for Zeeman effect in ordinary
guantum mechanics. To obtain the exact non-
commutative magnetic modifications of energy
( Emagyh » Emaghm ) for modified (QYH) and

(IQHM) potentials, it is sufficient to replace the 3-
parametersk, , © and 8 in Eqns. (33) and (40)

by the following new parametersi, X and o,
respectively, as

0’_
Emagyh = |N| B{ +2—#Tyh}m (53)

1 2 g =
Emaghm=§|Nn| B{)(Thm+2—/1Thm}m (54)

Where, m denote to the eigen-values of the
operator L, , which can take

valuesH,—1 + 1..0...] .

4. Results
Let us now summerise the global exact spectrum of
n" excited states Eneuny s Encayh aNd Ecomyn)
and (Encu—hm’ Encd-hm and Ecom—hm) for (MIQYH)
and MIQHM) potentials in NC-3D: RSP
produced by the diagonal eIement(Hqu_yh)ll,

(H no—yh)22 and (H nc—yh)33 ] and [(H nc—hm)u ’
(ﬁ m_hm)zz and (I:| nc_hm)?,g] of non-commutative
Hamiltonians operatoH neyh and H nehm - The

original two eigen-values K,;,, E,;,) in ordinary

three-dimensional spaces fdQYH) and (QHM)
potentials and the obtained results (34), (35)),(40
(42), (47), (48), (53), (54) allow us to gettingeth
following global results as

U2, -a-bd) 12

Encuny = (24 (n+;+\/2/z(b-Vo)+(' v z)zjz

~b)o? -

N, 6 = 1.2 o=
+| ;' K{@Tyh+ZITyh}+E|Nn| /YTyh+ZITyh}m

(55)
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w2, -a-bo) 12

[n+;+\/2,u(b—vo)+(l +1/2)2j2

o—
+—Tyhm
h 2u yh}

(56)

Encayn = (2V0 - b)52 -

N[> 6= 1.1
+TnK{OTyh+ZITyh}+ENn2
U2, -a-bd)* /2

(n+ 26 -Vo)+(1 +1/2)? )

(57)

Ecomyh = (2\/0 _b)a_z -

And

ua-As) 12
[n+%+\/2p(8+b)+(l +1/2)2j2

2 _ _
o = 1.2 o=
| h{eThm*'zluThm}*'an /\/Thm+2'uThm}m

Encum =C +Cb2 -

[N

+
(58)
,u(a - AcY)2 12

Encdhm=C+d)2_ 1 2
[n+E+J2y(B+b)+(I +1/2)2j

N,|* o= |1 g -
+% B{XThm+20,L/Thm}m2ank_{eThm+2,L/Thm}

(59)
_ 2
Ecomnm =C + ®? - IU(a AJ) 2 2
[n+% +2u(B+b)+( +1/2)2j
(60)
The explicit diagonal elements

[ (HA nc—yh)ll ’ (HA no—yh)22 ’ (l:l nc—yh)33 ] and
[ (HA nc—hm)]_]_ ) (ﬁ nc—hm)zz ) (HA nc—hm)33 ] of two
operatorsH ne-yh and (I:I n&hm) for (MIQYH) and

(MIQHM) potentials in NC-3D: RSP can be
deduced as

- b- —a-
(Hney"‘)11=_2'Au+( ',2\/0)-"(2\/0 l,a b6)+(b_2‘/0)62+

s ety

if j =1 +2=>spinup

(61)
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(ﬁneyl‘)zz —ZI+(br2\6) (2/0 ra td (b N)f
ol 2g-atd) 3] [ () [rg-atd),
K{G{ r4 23 ] 2/1} [Gi r# 23 j ZUJBIZ
if j =I —5=spirdown
(62)
b L e
(63)
And
[romko=— + 2522202 (o)«
+k{€(( (a—A+bé) } ‘{/\{ (B+b) a—A+bc)‘)) ]
if j=I- :>sp|ndown
(64)
~ A B+b a-A+bd
(H nehn)zzz_gﬁ? T +(C+b52) +
+K{®/\{(B+b) a—A+b6) } E{/y{ B+h a—A+b6)] ]
r4
if j =I ——;ssplndown
(65)
(ﬁ nHm)sg __2_A/1+ Brzb_a—A+b5+(C+b52)
(66)

It is well known that the atomic quantum
number m can be takes 2l +1) values and we
have also two possible values for eigen-values

jzlié , thus every state in usually three-

dimensional space forMIQYH) and MIQHM)
potentials will be replaced inNC-3D: RSP by
2(2I +1) sub-states and then the degenerated state

n-1

can be take 2 (2 +1)=2n? values. It is
i=0

important to notice that our recent study can be

extended to molecular case with S[Iil#%, we

replace the factors
ktsé{[l J_r%](l +%¢J)+I(I +J)—§} by new factor
K(j.19)=2{j(j+D+1 (1 +1 - {s+1} with

|l-§<j<|l+4, which allow us to obtain the
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modifications to the energy Ieve(Enc_hy, Enc_hm)
for (MIQYH) and MIQHM) potentials

u(2vy -a-bs)? /2

Enc-hy = (2\/0 _b)a—z - 1 2
[n+§+\/2,u(b—vo)+(l +1/2)2j

2 — —
N . 6 = 1 =
N ;‘ k(j,l,s){G)Tyh+2uTyh}+2NnZB{XTyh+20ﬂTyh}m
(67)
And
-AS)? /2
Epenm = C + 2 - - ua-A2) -
(n+5+\/2,u(B+b)+(I+1/2)2j
+‘N”‘2 k(j,1,syeT, +£ﬂm +1\N 2B AT, +iﬂm m
2 1 hm 2/1 2 n hm 2/1

(68)

And the corresponding non-commutative two
Hamiltonian operators ne—ynh and H . p, can be

fixed by the following results:

A 1 .
w438 gLl )
+(b—v0)+(2\s—a—b«ﬂ+(b_%)dz+{({(z:—4%)+(%—;—M)J+ 5}5

r? r r

sy

r

(69)

R 1 )
Hrom= _27(_%5(”5)*7 L) i )

,Btb_a- A+b5+(c+b52)+{({2(B: ) (2a-2A+ 2’“5))+£}[é
r

r? r r3 2u

e e 2)

It is important to notice that the appearance of
the polarization states of a fermionic particle for
(MIQYH) and MIQHM) potentials indicates the
validity of obtained results at very high energy,
where the two relativistic equations Klein-Gordon
and Dirac will be applied, which allow us to apply
these results to various nano-particles at nano-
scales. Finally, if we take the two limits

(9,5) - (0,0) simultaneously, we obtain all results
of ordinary quantum mechanics.

(70)
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5. Concluding Remarks

In this article, the new energy eigenvalues of
Schrodinger equations foM{QYH) and MIQHM)
potentials are successfully investigated by apglyin
the generalization of Boopp’s’ shift method and
standard perturbation theory iINC-3D: RSP. We
showed that the obtained degenerated spectrum
depended on new discrete atomic quantum

numbers (m, j=l++ ands,=+1) and the
validity of obtained corrections can be prolonged t

nano-particles at nano and Plank's scales. In
addition, we recover the ordinary commutative

spectrums when, we make the two simultaneously
limits: (6,6) - (00) for (MIQYH) and MIQHM)
potentials.
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