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Considering the LRS Bianchi type I metric we study here a perfect fluid cosmological model in the context of Layra’s 
geometry by using constant deceleration parameter. Exact solutions of field equations are obtained with certain physical 
assumptions in different cases. The physical behavior of the model is also discussed in details. 
 
 
 

1.     Introduction 

Einstein developed his general theory of relativity, 
where gravitation is described in terms of 
geometry. Based on the cosmological principle, 
Einstein introduced the cosmological constant into 
his field equations in order to obtain a static model 
of the Universe, because without the cosmological 
term his field equations admit only non-static 
cosmological models for non-zero energy density. 
Later, Weyl [1] proposed a more general theory in 
which electromagnetism is also described 
geometrically. He showed how one can introduce a 
vector field in the Riemannian space-time with an 
intrinsic geometrical significance. But this theory 
was based on non-integrability of length transfer so 
that it had some unsatisfactory features, and hence 
this theory which is known as Weyl’s geometry 
still today did not gain general acceptance. After 
having these concepts, Lyra [2] suggested a 
modification of Riemannian geometry, which may 
also be considered as a modification of Weyl’s 
geometry, by introducing a gauge function into the 
structure-less manifold, which removes the non-
integrability condition of the length of a vector 
under parallel transport and a cosmological 
constant is naturally introduced from the geometry. 
Halford [3,4] pointed out that in the normal general 
relativistic treatment the constant displacement 
vector field φi in Lyra’s geometry plays the role of 
cosmological constant and the scalar-tensor 
treatment based on Lyra’s geometry predicts the 
same effect, within observational limits, as far as 
the classical solar system test are concerned (as in 
the Einstein’s theory of relativity).  
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In the past and recent years many prominent 
researchers like [5-27] have investigated and 
proposed different cosmological models and ideas 
of the Universe within the framework of Lyra’s 
geometry and other theories of relativity in 
different context. But the main problem in 
Astrophysics is the discovery, about two decades 
ago, that our Universe expansion is accelerating, 
instead of slowing down as predicted by the Big 
Bang theory [28]. Observational evidence for 
accelerated expansion in the Universe has been 
growing during this period [29,30,31]. Independent 
confirmation using observations of high red shift 
supernovae [32-37] along with observations of 
cosmic microwave background radiation (CMB) 
[38-40] and large scale structure [41] have made 
this result more acceptable to the community. In 
fact, the recent observations of Type SNeIa 
supernova, CMB anisotropies the large scale 
galaxies structures of universe and Sachs Wolf 
effects have led to the idea that our universe 
undergoes accelerated expansion at the present 
epoch tending to a de-Sitter space-time as predicted 
by inflation theory [42-46]. 

Moreover, solutions of Einstein field equations 
in higher dimensional space times are believed to 
be of physical relevance possibly at extremely early 
times before the Universe underwent the 
compactification transitions. As a result, now the 
higher dimensional theory is receiving great 
attention in both cosmology and particle physics. 
Particle physicists and cosmologists predicted the 
existence of GUT (Grand Unified Theory). Using a 
suitable scalar field it was shown that the phase 
transitions on the early universe can give rise to 
such objects which are nothing but the topological 
knots in the vacuum expectation value of the scalar 
field and most of their energy is concentrated in a 
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small region. As the necessity to study higher-
dimensional space-time in this field aiming to unify 
gravity with other interactions the concept of extra 
dimension is relevant in cosmology. In particular, 
for the early stage of the Universe and theoretically 
the present four dimensional stage of the Universe 
might have been preceded by a multi-dimensional 
stage. 

So, in this paper we discuss the higher 
dimensional cosmological models in Lyra 
geometry by considering locally rotationally 
symmetric (LRS) Bianchi Type-I metric with the 
use of deceleration parameter and certain physical 
assumption to find out the solutions compatible 
with the observational facts. 

2.     Field Equations and Their Solutions 

Here we consider the five dimensional plane 
symmetric metric in the form 
 ��� = ������ − �	�
 + ����� + ���
 + �����                                   

(1) 
 
with the convention  �� = �, �� = , 	�� = ,�� = �, �� = 		 where A, B and C are functions of 
time  ‘t’ only. Here the extra coordinate is taken to 
be time-like. 

Einstein’s field equations based on Lyra’s 
Geometry as used by [47] and [48] is  
 

��� − �
����� + �

����� − �
�������� = −8����   (2) 

 
Where,  �� is the displacement vector given by 
 �� = �0,0,0,0, !�	

                     (3) 
 
and ��� is the energy momentum tensor for the 
perfect fluid given by 
 ��� = �" + #
$�$� − #���                 (4) 
 
Where, "	 is the energy density, p is the pressure 
and $� is the five velocity vector given by 
 

$� = �0,0,0,0, �%
                         (5) 

 

Also let, �� = ��% , 0,0,0,0
 so that  

 ���$�$� = −1 = −���� 	, '(�		$��� = 0        (6) 
 

In co-moving coordinate system, we have from 
Eqn. (4) 
 

��� = ��� = ��� = ��� = −#		; 				��� = " 
 ��� = 0			for	all		/ ≠ 1                        (7) 
 

Using Eqns. (3)-(7), the surviving field 
equations of Eqn. (2) for the metric in Eqn. (1) are 
obtained as 
 

2�3� + �3
� + �4 �

�� + 2�4 �4�� − 2�4�4�� − �4�4
�� + 3

4!� = ��# 

 (8) �3
� + �3

� + �3
� − �4�

�� + �4 �4
�� + 3

4!� = ��#		 
 (9) �3

� + 2�3� − �4�
�� + �4 �

�� + 3
4!� = ��# 

(10) �4 �
�� + 2�4�4�� + 2�4 �4�� + �4�4

�� − 3
4!� = −"�� 

 (11) 
 
Now from Eqns. (9) and (10) we have 
 

74
7 − 84

8 = �9
7:8                         (12) 

 
Where, ;� > 0	 is an integrating constant. 

Since the field equations (8)-(11) are highly 
non-linear, so in order to obtain the exact solution 
of Eqns. (8)-(11), we use the following scale 
transformations as used by [49]. 
 � = =>			, � = =?			, � = =@ 					 	and				�	 = ������ 

                  (13) 
 

Using transformations of Eqn. (13) in Eqns. (8)-
(11) we have 
 

2C// + E// − 4'/C/ − 2C/E/ − 2E/'/ − C/�
= #=���>F�?F@
 − 3

4!�=��>F�?F@
 
(14) 

 

'// + C// + E// − 3'/C/ − 2C/E/ − 2E/'/ − '/� − C/�
= #=���>F�?F@
 − 3

4!�=��>F�?F@
	 
(15) 

 

'// + 2C// − 4'/C/ − 2C/E/ − E/'/ − '/� − C/�
= #=���>F�?F@
 − 3

4!�=��>F�?F@
 
(16) 
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2'/C/ + 2C/E/ + E/'/ + C/�= −"=���>F�?F@

+ 3
4!�=��>F�?F@
 

 (17) 
Where, dashes denote derivative with respect to 
time ‘T’ 

Solving Eqns. (14)-(16) we have 
 ' = C = E                              (18) 
 
Therefore, from Eqn. (13) we have 
 � = � = �                              (19) 
 

By using Eqn. (19) in Eqns. (8)-(11) we have 
 

3 %3
% + �

�!� = ��#                         (20) 

 

6 %4:
%: − �

�!� = −��"                      (21) 

 
There are two independent equations involving 

four unknowns A, β, p and ρ. So, in order to get 
deterministic solutions of the above set of highly 
nonlinear Eqns. (20)-(21), we shall use the special 
law of variation of Hubble's parameter proposed by 
Bermann [13] that gives constant deceleration 
parameter as 
 

J = − KK3
K4:                              (22) 

 
Where, ‘q’ is a constant and 
 

� = ������
9L                         (23) 
 
is the overall scale factor. 

Here the constant ‘q’ is taken as negative, so the 
model is an accelerating model of the Universe. 

Solving Eqn. (22) we have 
 

� = �M	 + N
 9
OP9                      (24) 

 
Where, M ≠ 0		and	N are constants and J + 1 ≠ 0. 

By using Eqn. (19) in Eqn.(24) we have 
 

� = �L
Q                               (25) 

 
Therefore, from Eqns. (19), (24) and (25) we 

have 
 

� = � = � = �L
Q = �M	 + N
 L

Q�OP9
        (26) 

We shall now consider two cases described 
below. 

Case-I: When ββββ is a constant 
From Eqns. (20) and (21) we have 
 

# = 3
4

!�

�M	 + N
 R��SF�

− 12M��5J + 1

25�J + 1
��M	 + N
 R��SF�
F�

 

 
 (27) 

" = 3
4

!�

�M	 + N
 R��SF�

− 96M�

25�J + 1
��M	 + N
 R��SF�
F�
 

 (28) 
 
Here, the integrating constant α and are to be 
chosen in such a way that ρ and p are non-negative. 

Now, the metric in Eqn. (1) using Eqn. (28) can 
be written as  

��� = �M	 + N
 R��SF�
W��� + �� + ��� + ��� − �	�X 
 (29) 

 
The above equation (29) together with Eqns. (27) 
and (28) will be the exact 5-D LRS Bianchi type-I 
perfect fluid cosmological model in Lyra Geometry 
when β	is	a	constant.	

Now, if we take q = β	= 0 then we have from 
Eqns. (27) and (28) we have 
 

# = − 12M�

25�M	 + N
�R�  

" = − 96M�

25�M	 + N
�R�  

 
Since both ρ and the p are negative so from the 
above two equations we have 
 " = 8# 
 
Which satisfies the general equation of state: # = ^". 

Case-II: When ββββ is a function of t 
There are two independent field equations, Eqns.  
(20) and (21), involving three unknowns ρ	 , p and β. So, in order to get deterministic solution we 
must have to assume a physical or mathematical 
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condition amongst the unknowns. Here we consider 
the equation of state (i.e., physical condition) as 
 # = ^"                             (30) 
 
Case II-(a): Dust (or, in coherent matter) 
distribution [ δδδδ=0, i.e., p = 0 and ρ≠ρ≠ρ≠ρ≠0] 
When δ	= 0, then from Eqn. (30) we have   
 

 p=0                                 (31) 
 
Putting p = 0 in Eqn. (20), we have 
 3

4!� = 12M��5J + 1

25�J + 1
��M	 + N
� 

 (32) 
Using Eqns. (32) in (21) we have 

 

" = 12M��5J − 7

25�J + 1
��M	 + N
 R��SF�
F�

 

 (33) 
 
The above equation (29) together with equations 
(31)-(33) will constitute an exact 5-D LRS Bianchi 
type-I coherent matter distribution model universe 
in Lyra geometry. 

Case II-(b): Stiff (or, Zel'dovich) fluid 
distribution [ δ	δ	δ	δ	= 1] 
When δ=1 then from Eqn. (30) we have 
 # = "                               (34) 
 
When δ	=1 i.e., when p=ρ then we can see that it is 
not possible to find out a physically meaningful 
solution for the field equations. 

Therefore, when β is a function of time t then 
Bianchi type-I cosmological stiff fluid universe 
does not exist in this theory. 

Case II-(c): Disordered distribution of Radiation 
(or, Radiation Universe) [ a = b

c ] 
When ̂ = �

� then from Eqn. (30) we have 

 " = 3#                               (35) 
 
Using ρ	= 3p in Eqns. (20) and (21) we have 
 

# = 6M��5J − 7

25�J + 1
��M	 + N
 R��SF�
F�

 

 (36) 

" = 18M��5J − 7

25�J + 1
��M	 + N
 R��SF�
F�

 

 (37) 
Therefore, from Eqn. (20) (or (21)) we have 

 3
4!� = 6M��3J − 1


5�J + 1
��M	 + N
� 

 (38) 
 

Eqn. (29) together with Eqns. (35)-(38) will 
constitute an exact 5-D LRS Bianchi type-I 
radiating model universe in Lyra geometry. 

Case II-(d): Matter distribution in inter-nebular 
space [a = d

c] 
When,	^ = �

�, then from Eqn. (30) we have 

 

" = �
�#                                (39) 

 

Using " = �
� # we have from Eqns. (20) and 

(21) 
 

# = 24M��5J − 7

25�J + 1
��M	 + N
 R��SF�
F�

 

 (40) 

" = 36M��5J − 7

25�J + 1
��M	 + N
 R��SF�
F�

 

(41) 
 

Therefore from Eqn. (20) (or (21)) we have 
 3

4!� = 12M��15J − 13

25�J + 1
��M	 + N
� 

(42) 
 
Eqn. (29) together with Eqns. (39)-(42) will 
constitute an exact 5-D LRS Bianchi type-I 
cosmological model universe in the matter 
distribution in inter-nebular space in Lyra 
geometry. 

In all the cases, II-(a)-(d) the reality condition ρ	>	0 is obtained as 
 

J > e
�                             (43) 

 
Now in all the above four cases we see that the 

value of the deceleration parameter q > 0 i.e., our 
model is an accelerating one. 
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3.     Physical and Geometrical Properties of the 
Solutions 

Here, the spatial volume V and the average scale 
factor R(t) for the Bianchi type-I plane symmetric 

metric (Eqn. (1)) defined by f = ���	
 = �−�
9: =����� = �� of the model are given by 
 

f = �M	 + N
 L
OP9                      (44) 

 
and 

��	
 = �M	 + N
 9
OP9                    (45) 

 
We observed that the volume V is increasing 

with the increase of time if q+1 > 0 i.e., if q > -1 
and the volume V is decreasing with the increase of 
time and tend to zero as t →	∞ if q+1 < 0 i.e., if q 
< -1. Also the scale factor R is increasing with the 
increase of time if q+1 > 0 i.e., if q > -1 and the 
scale factor R is decreasing with the increase of 
time and tend to zero as t →	∞ if q+1 < 0 i.e., if q 
< -1 

Also, the mean Hubble's parameter H is 
obtained as 
 

i = j
�SF�
�jkFl
                       (46) 

 
From the above Eqn. (46) it has been observed 

that in the initial stage, when t = 0 or t= j
�SF�
l . 

Again, the value of H decreases with the increase 
of time t and finally H becomes zero whenever t →	∞. Also the Hubble’s parameter H becomes infinite 
whenever q = -1 or 		 = − l

j. 

The expansion factor Θ calculated for the flow 
vector ui is given by 
 

m = $;�� = 1
� n

A4
A + 2B4B + C4

Cr = 4 �4
��

= 16M
5�J + 1
�M	 + N
 ���SF�
F�

 

 (47) 
 
The model has a singularity at 		 = − l

j  and the 

scalar expansion Θ →	0	as time t →	∞ if J	 > 	− �
�.   

The components of the shear scalar σ for the 
metric in Eqn. (1) are given by 
 

t	�� = 1
� n

�4
� − �m

4 r 

t	�� = 1
�n

�4
� − �m

4 r 

t	�� = 1
�n

�4
� − �m

4 r 

t	�� = 1
� n

�4
� − �m

4 r 

t	�� = 0 
 
Therefore, the shear scalar σ for the metric in Eqn. 
(1) is given by 
 

t� = 1
2t��t�� = 1

2 u�t	��
� + �t	��
� + �t	��
�
+ �t	��
� + �t	��
�v = 0 

 (48) 
Since σ2 = 0 so our model universe is shear 

free. Also since  
w
x = 0 for all values of ‘t, so our 

model universe is always an isotropic one.  

4.    Conclusion 

In this work, we have considered a LRS Bianchi 
type I cosmological model universe interacting 
with perfect fluid in the context of Layra’s 
geometry by using constant deceleration parameter. 
We have discussed different distributions like dust, 
stiff fluid, disordered distribution and Matter 
distribution in inter-nabular space and it is 
observed that our model universe is always an 
isotropic one. 
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